Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection (2406.11260v2)

Published 17 Jun 2024 in cs.CL and cs.AI

Abstract: The spread of fake news negatively impacts individuals and is regarded as a significant social challenge that needs to be addressed. A number of algorithmic and insightful features have been identified for detecting fake news. However, with the recent LLMs and their advanced generation capabilities, many of the detectable features (e.g., style-conversion attacks) can be altered, making it more challenging to distinguish from real news. This study proposes adversarial style augmentation, AdStyle, to train a fake news detector that remains robust against various style-conversion attacks. Our model's key mechanism is the careful use of LLMs to automatically generate a diverse yet coherent range of style-conversion attack prompts. This improves the generation of prompts that are particularly difficult for the detector to handle. Experiments show that our augmentation strategy improves robustness and detection performance when tested on fake news benchmark datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sungwon Park (19 papers)
  2. Sungwon Han (20 papers)
  3. Meeyoung Cha (63 papers)