Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework (2406.11159v1)

Published 17 Jun 2024 in cs.LG and cs.DC

Abstract: Distributed stochastic gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning. However, the staggers and limited bandwidth may induce random computational/communication delays, thereby severely hindering the learning process. Therefore, how to accelerate asynchronous SGD by efficiently scheduling multiple workers is an important issue. In this paper, a unified framework is presented to analyze and optimize the convergence of asynchronous SGD based on stochastic delay differential equations (SDDEs) and the Poisson approximation of aggregated gradient arrivals. In particular, we present the run time and staleness of distributed SGD without a memorylessness assumption on the computation times. Given the learning rate, we reveal the relevant SDDE's damping coefficient and its delay statistics, as functions of the number of activated clients, staleness threshold, the eigenvalues of the Hessian matrix of the objective function, and the overall computational/communication delay. The formulated SDDE allows us to present both the distributed SGD's convergence condition and speed by calculating its characteristic roots, thereby optimizing the scheduling policies for asynchronous/event-triggered SGD. It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness. Moreover, a small degree of staleness does not necessarily slow down the convergence, while a large degree of staleness will result in the divergence of distributed SGD. Numerical results demonstrate the potential of our SDDE framework, even in complex learning tasks with non-convex objective functions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Siyuan Yu (49 papers)
  2. Wei Chen (1288 papers)
  3. H. Vincent Poor (884 papers)