Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Face Forgery Detection Learning with Personalized Representation (2406.11145v1)

Published 17 Jun 2024 in cs.CV

Abstract: Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat. Traditional forgery detection methods directly centralized training on data and lacked consideration of information sharing in non-public video data scenarios and data privacy. Naturally, the federated learning strategy can be applied for privacy protection, which aggregates model parameters of clients but not original data. However, simple federated learning can't achieve satisfactory performance because of poor generalization capabilities for the real hybrid-domain forgery dataset. To solve the problem, the paper proposes a novel federated face forgery detection learning with personalized representation. The designed Personalized Forgery Representation Learning aims to learn the personalized representation of each client to improve the detection performance of individual client models. In addition, a personalized federated learning training strategy is utilized to update the parameters of the distributed detection model. Here collaborative training is conducted on multiple distributed client devices, and shared representations of these client models are uploaded to the server side for aggregation. Experiments on several public face forgery detection datasets demonstrate the superior performance of the proposed algorithm compared with state-of-the-art methods. The code is available at \emph{https://github.com/GANG370/PFR-Forgery.}

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com