Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction (2406.08336v2)

Published 12 Jun 2024 in cs.SD, cs.CV, and eess.AS

Abstract: Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech. It still suffers from low speaker similarity and poor prosody naturalness. In this paper, we propose a multi-modal DSR model by leveraging neural codec LLMing to improve the reconstruction results, especially for the speaker similarity and prosody naturalness. Our proposed model consists of: (i) a multi-modal content encoder to extract robust phoneme embeddings from dysarthric speech with auxiliary visual inputs; (ii) a speaker codec encoder to extract and normalize the speaker-aware codecs from the dysarthric speech, in order to provide original timbre and normal prosody; (iii) a codec LLM based speech decoder to reconstruct the speech based on the extracted phoneme embeddings and normalized codecs. Evaluations on the commonly used UASpeech corpus show that our proposed model can achieve significant improvements in terms of speaker similarity and prosody naturalness.

Summary

We haven't generated a summary for this paper yet.