Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CTC-aligned Audio-Text Embedding for Streaming Open-vocabulary Keyword Spotting (2406.07923v1)

Published 12 Jun 2024 in cs.SD, cs.AI, and eess.AS

Abstract: This paper introduces a novel approach for streaming openvocabulary keyword spotting (KWS) with text-based keyword enroLLMent. For every input frame, the proposed method finds the optimal alignment ending at the frame using connectionist temporal classification (CTC) and aggregates the frame-level acoustic embedding (AE) to obtain higher-level (i.e., character, word, or phrase) AE that aligns with the text embedding (TE) of the target keyword text. After that, we calculate the similarity of the aggregated AE and the TE. To the best of our knowledge, this is the first attempt to dynamically align the audio and the keyword text on-the-fly to attain the joint audio-text embedding for KWS. Despite operating in a streaming fashion, our approach achieves competitive performance on the LibriPhrase dataset compared to the non-streaming methods with a mere 155K model parameters and a decoding algorithm with time complexity O(U), where U is the length of the target keyword at inference time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Sichen Jin (2 papers)
  2. Youngmoon Jung (18 papers)
  3. Seungjin Lee (15 papers)
  4. Jaeyoung Roh (3 papers)
  5. Changwoo Han (5 papers)
  6. Hoonyoung Cho (2 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.