Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Large Language Models for Relevance Judgments in Tetun (2406.07299v1)

Published 11 Jun 2024 in cs.IR

Abstract: The Cranfield paradigm has served as a foundational approach for developing test collections, with relevance judgments typically conducted by human assessors. However, the emergence of LLMs has introduced new possibilities for automating these tasks. This paper explores the feasibility of using LLMs to automate relevance assessments, particularly within the context of low-resource languages. In our study, LLMs are employed to automate relevance judgment tasks, by providing a series of query-document pairs in Tetun as the input text. The models are tasked with assigning relevance scores to each pair, where these scores are then compared to those from human annotators to evaluate the inter-annotator agreement levels. Our investigation reveals results that align closely with those reported in studies of high-resource languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Gabriel de Jesus (3 papers)
  2. Sérgio Nunes (9 papers)
Citations (3)
X Twitter Logo Streamline Icon: https://streamlinehq.com