Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomalous propagators and the particle-particle channel: Hedin's equations (2406.07062v2)

Published 11 Jun 2024 in physics.chem-ph, cond-mat.mtrl-sci, cond-mat.str-el, and nucl-th

Abstract: Hedin's equations provide an elegant route to compute the exact one-body Green's function (or propagator) via the self-consistent iteration of a set of non-linear equations. Its first-order approximation, known as $GW$, corresponds to a resummation of ring diagrams and has shown to be extremely successful in physics and chemistry. Systematic improvement is possible, although challenging, via the introduction of vertex corrections. Considering anomalous propagators and an external pairing potential, we derive a new self-consistent set of closed equations equivalent to the famous Hedin equations but having as a first-order approximation the particle-particle (pp) $T$-matrix approximation where one performs a resummation of the ladder diagrams. This pp version of Hedin's equations offers a way to go systematically beyond the $T$-matrix approximation by accounting for low-order pp vertex corrections.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com