Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RAPID: Robust APT Detection and Investigation Using Context-Aware Deep Learning (2406.05362v1)

Published 8 Jun 2024 in cs.CR and cs.LG

Abstract: Advanced persistent threats (APTs) pose significant challenges for organizations, leading to data breaches, financial losses, and reputational damage. Existing provenance-based approaches for APT detection often struggle with high false positive rates, a lack of interpretability, and an inability to adapt to evolving system behavior. We introduce RAPID, a novel deep learning-based method for robust APT detection and investigation, leveraging context-aware anomaly detection and alert tracing. By utilizing self-supervised sequence learning and iteratively learned embeddings, our approach effectively adapts to dynamic system behavior. The use of provenance tracing both enriches the alerts and enhances the detection capabilities of our approach. Our extensive evaluation demonstrates RAPID's effectiveness and computational efficiency in real-world scenarios. In addition, RAPID achieves higher precision and recall than state-of-the-art methods, significantly reducing false positives. RAPID integrates contextual information and facilitates a smooth transition from detection to investigation, providing security teams with detailed insights to efficiently address APT threats.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com