Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HackAtari: Atari Learning Environments for Robust and Continual Reinforcement Learning (2406.03997v1)

Published 6 Jun 2024 in cs.AI and cs.LG

Abstract: Artificial agents' adaptability to novelty and alignment with intended behavior is crucial for their effective deployment. Reinforcement learning (RL) leverages novelty as a means of exploration, yet agents often struggle to handle novel situations, hindering generalization. To address these issues, we propose HackAtari, a framework introducing controlled novelty to the most common RL benchmark, the Atari Learning Environment. HackAtari allows us to create novel game scenarios (including simplification for curriculum learning), to swap the game elements' colors, as well as to introduce different reward signals for the agent. We demonstrate that current agents trained on the original environments include robustness failures, and evaluate HackAtari's efficacy in enhancing RL agents' robustness and aligning behavior through experiments using C51 and PPO. Overall, HackAtari can be used to improve the robustness of current and future RL algorithms, allowing Neuro-Symbolic RL, curriculum RL, causal RL, as well as LLM-driven RL. Our work underscores the significance of developing interpretable in RL agents.

Citations (3)

Summary

We haven't generated a summary for this paper yet.