Papers
Topics
Authors
Recent
2000 character limit reached

Can a Few Decide for Many? The Metric Distortion of Sortition

Published 4 Jun 2024 in cs.GT | (2406.02400v1)

Abstract: Recent works have studied the design of algorithms for selecting representative sortition panels. However, the most central question remains unaddressed: Do these panels reflect the entire population's opinion? We present a positive answer by adopting the concept of metric distortion from computational social choice, which aims to quantify how much a panel's decision aligns with the ideal decision of the population when preferences and agents lie on a metric space. We show that uniform selection needs only logarithmically many agents in terms of the number of alternatives to achieve almost optimal distortion. We also show that Fair Greedy Capture, a selection algorithm introduced recently by Ebadian & Micha (2024), matches uniform selection's guarantees of almost optimal distortion and also achieves constant ex-post distortion, ensuring a "best of both worlds" performance.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.