Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Boosting Sortition via Proportional Representation (2406.00913v1)

Published 3 Jun 2024 in cs.GT

Abstract: Sortition is based on the idea of choosing randomly selected representatives for decision making. The main properties that make sortition particularly appealing are fairness -- all the citizens can be selected with the same probability -- and proportional representation -- a randomly selected panel probably reflects the composition of the whole population. When a population lies on a representation metric, we formally define proportional representation by using a notion called the core. A panel is in the core if no group of individuals is underrepresented proportional to its size. While uniform selection is fair, it does not always return panels that are in the core. Thus, we ask if we can design a selection algorithm that satisfies fairness and ex post core simultaneously. We answer this question affirmatively and present an efficient selection algorithm that is fair and provides a constant-factor approximation to the optimal ex post core. Moreover, we show that uniformly random selection satisfies a constant-factor approximation to the optimal ex ante core. We complement our theoretical results by conducting experiments with real data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube