Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No Captions, No Problem: Captionless 3D-CLIP Alignment with Hard Negatives via CLIP Knowledge and LLMs (2406.02202v2)

Published 4 Jun 2024 in cs.CV and cs.AI

Abstract: In this study, we explore an alternative approach to enhance contrastive text-image-3D alignment in the absence of textual descriptions for 3D objects. We introduce two unsupervised methods, $I2I$ and $(I2L)2$, which leverage CLIP knowledge about textual and 2D data to compute the neural perceived similarity between two 3D samples. We employ the proposed methods to mine 3D hard negatives, establishing a multimodal contrastive pipeline with hard negative weighting via a custom loss function. We train on different configurations of the proposed hard negative mining approach, and we evaluate the accuracy of our models in 3D classification and on the cross-modal retrieval benchmark, testing image-to-shape and shape-to-image retrieval. Results demonstrate that our approach, even without explicit text alignment, achieves comparable or superior performance on zero-shot and standard 3D classification, while significantly improving both image-to-shape and shape-to-image retrieval compared to previous methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Cristian Sbrolli (5 papers)
  2. Matteo Matteucci (91 papers)

Summary

We haven't generated a summary for this paper yet.