Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis under a Unified Fomulation of Learning Algorithms with Output Constraints (2406.01647v2)

Published 3 Jun 2024 in cs.LG and cs.AI

Abstract: Neural networks (NN) perform well in diverse tasks, but sometimes produce nonsensical results to humans. Most NN models "solely" learn from (input, output) pairs, occasionally conflicting with human knowledge. Many studies indicate injecting human knowledge by reducing output constraints during training can improve model performance and reduce constraint violations. While there have been several attempts to compare different existing algorithms under the same programming framework, nonetheless, there has been no previous work that categorizes learning algorithms with output constraints in a unified manner. Our contributions are as follows: (1) We categorize the previous studies based on three axes: type of constraint loss used (e.g. probabilistic soft logic, REINFORCE), exploration strategy of constraint-violating examples, and integration mechanism of learning signals from main task and constraint. (2) We propose new algorithms to integrate the information of main task and constraint injection, inspired by continual-learning algorithms. (3) Furthermore, we propose the $H\beta$-score as a metric for considering the main task metric and constraint violation simultaneously. To provide a thorough analysis, we examine all the algorithms on three NLP tasks: natural language inference (NLI), synthetic transduction examples (STE), and semantic role labeling (SRL). We explore and reveal the key factors of various algorithms associated with achieving high $H\beta$-scores.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mooho Song (2 papers)
  2. Jay-Yoon Lee (16 papers)