Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Guided Score identity Distillation for Data-Free One-Step Text-to-Image Generation (2406.01561v4)

Published 3 Jun 2024 in cs.CV, cs.AI, cs.LG, stat.ML, and cs.CL

Abstract: Diffusion-based text-to-image generation models trained on extensive text-image pairs have demonstrated the ability to produce photorealistic images aligned with textual descriptions. However, a significant limitation of these models is their slow sample generation process, which requires iterative refinement through the same network. To overcome this, we introduce a data-free guided distillation method that enables the efficient distillation of pretrained Stable Diffusion models without access to the real training data, often restricted due to legal, privacy, or cost concerns. This method enhances Score identity Distillation (SiD) with Long and Short Classifier-Free Guidance (LSG), an innovative strategy that applies Classifier-Free Guidance (CFG) not only to the evaluation of the pretrained diffusion model but also to the training and evaluation of the fake score network. We optimize a model-based explicit score matching loss using a score-identity-based approximation alongside our proposed guidance strategies for practical computation. By exclusively training with synthetic images generated by its one-step generator, our data-free distillation method rapidly improves FID and CLIP scores, achieving state-of-the-art FID performance while maintaining a competitive CLIP score. Notably, the one-step distillation of Stable Diffusion 1.5 achieves an FID of 8.15 on the COCO-2014 validation set, a record low value under the data-free setting. Our code and checkpoints are available at https://github.com/mingyuanzhou/SiD-LSG.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets