Papers
Topics
Authors
Recent
Search
2000 character limit reached

LLEMamba: Low-Light Enhancement via Relighting-Guided Mamba with Deep Unfolding Network

Published 3 Jun 2024 in cs.CV | (2406.01028v1)

Abstract: Transformer-based low-light enhancement methods have yielded promising performance by effectively capturing long-range dependencies in a global context. However, their elevated computational demand limits the scalability of multiple iterations in deep unfolding networks, and hence they have difficulty in flexibly balancing interpretability and distortion. To address this issue, we propose a novel Low-Light Enhancement method via relighting-guided Mamba with a deep unfolding network (LLEMamba), whose theoretical interpretability and fidelity are guaranteed by Retinex optimization and Mamba deep priors, respectively. Specifically, our LLEMamba first constructs a Retinex model with deep priors, embedding the iterative optimization process based on the Alternating Direction Method of Multipliers (ADMM) within a deep unfolding network. Unlike Transformer, to assist the deep unfolding framework with multiple iterations, the proposed LLEMamba introduces a novel Mamba architecture with lower computational complexity, which not only achieves light-dependent global visual context for dark images during reflectance relight but also optimizes to obtain more stable closed-form solutions. Experiments on the benchmarks show that LLEMamba achieves superior quantitative evaluations and lower distortion visual results compared to existing state-of-the-art methods.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.