Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 29 tok/s
Gemini 2.5 Flash 127 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 184 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Are Large Language Models Chameleons? An Attempt to Simulate Social Surveys (2405.19323v2)

Published 29 May 2024 in cs.CL, cs.AI, cs.CY, and cs.LG

Abstract: Can LLMs simulate social surveys? To answer this question, we conducted millions of simulations in which LLMs were asked to answer subjective questions. A comparison of different LLM responses with the European Social Survey (ESS) data suggests that the effect of prompts on bias and variability is fundamental, highlighting major cultural, age, and gender biases. We further discussed statistical methods for measuring the difference between LLM answers and survey data and proposed a novel measure inspired by Jaccard similarity, as LLM-generated responses are likely to have a smaller variance. Our experiments also reveal that it is important to analyze the robustness and variability of prompts before using LLMs to simulate social surveys, as their imitation abilities are approximate at best.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: