Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive estimation of $\mathbb{L}_2$-norm of a probability density and related topics I. Lower bounds (2405.16515v1)

Published 26 May 2024 in math.ST and stat.TH

Abstract: We deal with the problem of the adaptive estimation of the $\mathbb{L}_2$-norm of a probability density on $\mathbb{R}d$, $d\geq 1$, from independent observations. The unknown density is assumed to be uniformly bounded and to belong to the union of balls in the isotropic/anisotropic Nikolskii's spaces. We will show that the optimally adaptive estimators over the collection of considered functional classes do no exist. Also, in the framework of an abstract density model we present several generic lower bounds related to the adaptive estimation of an arbitrary functional of a probability density. These results having independent interest have no analogue in the existing literature. In the companion paper Cleanthous et al (2024) we prove that established lower bounds are tight and provide with explicit construction of adaptive estimators of $\mathbb{L}_2$-norm of the density.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.