Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Minimax estimation of norms of a probability density: I. Lower bounds (2008.10979v1)

Published 25 Aug 2020 in math.ST and stat.TH

Abstract: The paper deals with the problem of nonparametric estimating the $L_p$--norm, $p\in (1,\infty)$, of a probability density on $Rd$, $d\geq 1$ from independent observations. The unknown density %to be estimated is assumed to belong to a ball in the anisotropic Nikolskii's space. We adopt the minimax approach, and derive lower bounds on the minimax risk. In particular, we demonstrate that accuracy of estimation procedures essentially depends on whether $p$ is integer or not. Moreover, we develop a general technique for derivation of lower bounds on the minimax risk in the problems of estimating nonlinear functionals. The proposed technique is applicable for a broad class of nonlinear functionals, and it is used for derivation of the lower bounds in the~$L_p$--norm estimation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube