Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Root lattices and invariant series for plumbed 3-manifolds (2405.14972v3)

Published 23 May 2024 in math.GT, math.AG, and math.QA

Abstract: We study formal series which are invariants of plumbed 3-manifolds twisted by root lattices. These series extend the BPS $q$-series $\widehat{Z}(q)$ recently defined in Gukov-Pei-Putrov-Vafa, Gukov-Manolescu, Park, and further refined in Ri. We show that the series $\widehat{Z}(q)$ is unique in an appropriate sense and decomposes as the average of related series which are themselves invariant under the five Neumann moves amongst plumbing trees. Explicit computations are presented in the case of Brieskorn spheres and a non-Seifert manifold.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Lattice cohomology and q𝑞qitalic_q-series invariants of 3-manifolds. Journal für die reine und angewandte Mathematik (Crelles Journal), 2023(796):269–299, 2023.
  2. Higher depth quantum modular forms and plumbed 3-manifolds. Letters in Mathematical Physics, 110(10):2675–2702, 2020.
  3. Quantum modular forms and plumbing graphs of 3-manifolds. Journal of Combinatorial Theory, Series A, 170:105145, 2020.
  4. N. Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.
  5. H.-J. Chung. BPS invariants for Seifert manifolds. Journal of High Energy Physics, 2020(3):1–67, 2020.
  6. A two-variable series for knot complements. Quantum Topology, 12(1), 2021.
  7. BPS spectra and 3-manifold invariants. Journal of Knot Theory and Its Ramifications, 29(02):2040003, 2020.
  8. Fivebranes and 3-manifold homology. Journal of High Energy Physics, 2017(7):1–82, 2017.
  9. J. E. Humphreys. Introduction to Lie algebras and representation theory, volume Vol. 9 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1972.
  10. Infinite families of quantum modular 3-manifold invariants. Communications in Number Theory and Physics, to appear, arXiv:2306.14765, 2023.
  11. Modular forms and quantum invariants of 3-manifolds. Asian Journal of Mathematics, 3(1):93–108, 1999.
  12. A. Némethi. Normal surface singularities, volume 74 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, 2022.
  13. W. D. Neumann. A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Transactions of the American Mathematical Society, 268(2):299–344, 1981.
  14. S. Park. Higher rank Z^^𝑍\widehat{Z}over^ start_ARG italic_Z end_ARG and FKsubscript𝐹𝐾F_{K}italic_F start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 16:044, 2020.
  15. S. J. Ri. Refined and generalized Z^^𝑍\hat{Z}over^ start_ARG italic_Z end_ARG invariants for plumbed 3-manifolds. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 19:011, 2023.
  16. D. Zagier. Quantum modular forms. Quanta of maths, 11:659–675, 2010.
Citations (1)

Summary

We haven't generated a summary for this paper yet.