Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Multitask Dense Predictor via Binarization (2405.14136v1)

Published 23 May 2024 in cs.CV

Abstract: Multi-task learning for dense prediction has emerged as a pivotal area in computer vision, enabling simultaneous processing of diverse yet interrelated pixel-wise prediction tasks. However, the substantial computational demands of state-of-the-art (SoTA) models often limit their widespread deployment. This paper addresses this challenge by introducing network binarization to compress resource-intensive multi-task dense predictors. Specifically, our goal is to significantly accelerate multi-task dense prediction models via Binary Neural Networks (BNNs) while maintaining and even improving model performance at the same time. To reach this goal, we propose a Binary Multi-task Dense Predictor, Bi-MTDP, and several variants of Bi-MTDP, in which a multi-task dense predictor is constructed via specified binarized modules. Our systematical analysis of this predictor reveals that performance drop from binarization is primarily caused by severe information degradation. To address this issue, we introduce a deep information bottleneck layer that enforces representations for downstream tasks satisfying Gaussian distribution in forward propagation. Moreover, we introduce a knowledge distillation mechanism to correct the direction of information flow in backward propagation. Intriguingly, one variant of Bi-MTDP outperforms full-precision (FP) multi-task dense prediction SoTAs, ARTC (CNN-based) and InvPT (ViT-Based). This result indicates that Bi-MTDP is not merely a naive trade-off between performance and efficiency, but is rather a benefit of the redundant information flow thanks to the multi-task architecture. Code is available at https://github.com/42Shawn/BiMTDP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yuzhang Shang (35 papers)
  2. Dan Xu (120 papers)
  3. Gaowen Liu (60 papers)
  4. Ramana Rao Kompella (20 papers)
  5. Yan Yan (242 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.