Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Systematic comparison of neural networks used in discovering strong gravitational lenses (2405.12975v1)

Published 21 May 2024 in astro-ph.GA and astro-ph.CO

Abstract: Efficient algorithms are being developed to search for strong gravitational lens systems owing to increasing large imaging surveys. Neural networks have been successfully used to discover galaxy-scale lens systems in imaging surveys such as the Kilo Degree Survey, Hyper-Suprime Cam (HSC) Survey and Dark Energy Survey over the last few years. Thus, it has become imperative to understand how some of these networks compare, their strengths and the role of the training datasets as most of the networks make use of supervised learning algorithms. In this work, we present the first-of-its-kind systematic comparison and benchmarking of networks from four teams that have analysed the HSC Survey data. Each team has designed their training samples and developed neural networks independently but coordinated apriori in reserving specific datasets strictly for test purposes. The test sample consists of mock lenses, real (candidate) lenses and real non-lenses gathered from various sources to benchmark and characterise the performance of each of the network. While each team's network performed much better on their own constructed test samples compared to those from others, all networks performed comparable on the test sample with real (candidate) lenses and non-lenses. We also investigate the impact of swapping the training samples amongst the teams while retaining the same network architecture. We find that this resulted in improved performance for some networks. These results have direct implications on measures to be taken for lens searches with upcoming imaging surveys such as the Rubin-Legacy Survey of Space and Time, Roman and Euclid.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.