Entanglement dynamics in intensity-dependent double Jaynes-Cummings model for squeezed coherent thermal states (2405.10564v6)
Abstract: In this paper, the entanglement dynamics of different subsystems such as atom-atom, atom-field and field-field with radiation field in squeezed coherent thermal states for the intensity-dependent double Jaynes-Cummings model (IDDJCM) and double Jaynes-Cummings model (DJCM) are investigated. The effects of squeezed and thermal photons on entanglement are examined, revealing their complementary roles in shaping the entanglement behavior in both models. One of the main features of the double Jaynes-Cummings model is the observation of entanglement sudden death for every subsystem. The effects of various interactions such as Ising interaction, single photon exchange interaction and dipole-dipole interaction on entanglement dynamics are studied. The effects of detuning, Kerr-nonlinearity on the entanglement dynamics are investigated for every subsystem. It is noticed that proper choice of the interactions parameters, detuning and Kerr-nonlinearity effectively removes entanglement deaths from the dynamics.
- Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). URL https://link.aps.org/doi/10.1103/RevModPhys.81.865.
- Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). URL https://link.aps.org/doi/10.1103/PhysRevLett.70.1895.
- Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.69.2881.
- Exact mapping of the 2+1212+12 + 1 dirac oscillator onto the jaynes-cummings model: Ion-trap experimental proposal. Phys. Rev. A 76, 041801 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.76.041801.
- Lv, D. et al. Reconstruction of the jaynes-cummings field state of ionic motion in a harmonic trap. Phys. Rev. A 95, 043813 (2017). URL https://link.aps.org/doi/10.1103/PhysRevA.95.043813.
- Time-dependent nonlinear jaynes-cummings dynamics of a trapped ion. Phys. Rev. A 97, 043806 (2018). URL https://link.aps.org/doi/10.1103/PhysRevA.97.043806.
- Nonclassical states of motion in ion traps a version of this chapter has been submitted to advances of atomic and molecular physics. vol. 37 of Advances In Atomic, Molecular, and Optical Physics, 237–296 (Academic Press, 1996). URL https://www.sciencedirect.com/science/article/pii/S1049250X08601020.
- Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010). URL https://link.aps.org/doi/10.1103/PhysRevA.82.053832.
- Upper bounded and sliced jaynes– and anti-jaynes–cummings hamiltonians and liouvillians in cavity quantum electrodynamics. Journal of Modern Optics 62, 1561–1569 (2015). URL https://doi.org/10.1080/09500340.2015.1051150. https://doi.org/10.1080/09500340.2015.105115.
- Cavity quantum electrodynamics in the ultrastrong coupling regime. Scientia Iranica 18, 820–826 (2011). URL https://www.sciencedirect.com/science/article/pii/S1026309811001143.
- Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics 6, 772–776 (2010). URL https://doi.org/10.1038/nphys1730.
- From cavity to circuit quantum electrodynamics. Nature Physics 16, 243–246 (2020). URL https://doi.org/10.1038/s41567-020-0812-1.
- Fink, J. et al. Climbing the jaynes–cummings ladder and observing its nonlinearity in a cavity qed system. Nature 454, 315–318 (2008). URL https://doi.org/10.1038/nature07112.
- Reed, M. D. et al. High-fidelity readout in circuit quantum electrodynamics using the jaynes-cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010). URL https://link.aps.org/doi/10.1103/PhysRevLett.105.173601.
- Architecture dependence of photon antibunching in cavity quantum electrodynamics. Phys. Rev. A 92, 023810 (2015). URL https://link.aps.org/doi/10.1103/PhysRevA.92.023810.
- Characterizing polariton states in the nondispersive regime of circuit quantum electrodynamics. Physical Review A 108 (2023). URL http://dx.doi.org/10.1103/PhysRevA.108.033703.
- PERSSON, D. L. Hybrid microwave resonator-nanoscale conductor systems (2023). URL https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9111371&fileOId=9111373.
- Sudden death of entanglement of two jaynes-cummings atoms. Journal of Physics B Atomic Molecular and Optical Physics 39 (2006). URL https://www.researchgate.net/publication/2197779.
- Sudden death of entanglement of two jaynes–cummings atoms. Journal of Physics B: Atomic, Molecular and Optical Physics 39, S621 (2006). URL https://dx.doi.org/10.1088/0953-4075/39/15/S09.
- Quantum open system theory: Bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006). URL https://link.aps.org/doi/10.1103/PhysRevLett.97.140403.
- Sudden death of entanglement. Science 323, 598–601 (2009). URL https://www.science.org/doi/abs/10.1126/science.1167343. https://www.science.org/doi/pdf/10.1126/science.1167343.
- Sudden death of entanglement: Classical noise effects. Optics Communications 264, 393–397 (2006). URL https://www.sciencedirect.com/science/article/pii/S0030401806005104. Quantum Control of Light and Matter.
- Pairwise concurrence dynamics: a four-qubit model. Journal of Physics B: Atomic, Molecular and Optical Physics 40, S45 (2007). URL https://dx.doi.org/10.1088/0953-4075/40/9/S02.
- Evolution from entanglement to decoherence of bipartite mixed” x” states. arXiv preprint quant-ph/0503089 (2005). URL https://doi.org/10.48550/arXiv.quant-ph/0503089.
- Sudden death of entanglement. Science 323, 598–601 (2009). URL https://www.science.org/doi/full/10.1126/science.1167343.
- The end of an entanglement. Science 316, 555–557 (2007). URL https://www.science.org/doi/abs/10.1126/science.1142654. https://www.science.org/doi/pdf/10.1126/science.1142654.
- Entanglement invariant for the double jaynes-cummings model. Phys. Rev. A 76, 042313 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.76.042313.
- Effects of cavity–cavity interaction on the entanglement dynamics of a generalized double jaynes–cummings model. Journal of Physics B: Atomic, Molecular and Optical Physics 51, 045501 (2018). URL https://doi.org/10.1088/1361-6455/aaa2cf.
- Entanglement dynamics of two atoms in the squeezed vacuum and the coherent fields. International Journal of Theoretical Physics 59, 730–742 (2020). URL https://doi.org/10.1007/s10773-019-04359-2.
- Quantum entanglement in double quantum systems and jaynes-cummings model. Nanoscale research letters 12, 1–9 (2017). URL https://doi.org/10.1186/s11671-017-1985-0.
- Population inversion and entanglement in single and double glassy jaynes-cummings models. Phys. Rev. A 101, 053805 (2020). URL https://link.aps.org/doi/10.1103/PhysRevA.101.053805.
- Influence of an external classical field on the interaction between a field and an atom in presence of intrinsic damping. International Journal of Theoretical Physics 57, 2787–2801 (2018). URL https://doi.org/10.1007/s10773-018-3799-y.
- Laha, P. Dynamics of a multipartite hybrid quantum system with beamsplitter, dipole-dipole. Journal of the Optical Society of America B 7, 1–2 (2023). URL https://doi.org/10.1364/JOSAB.489223.
- Quantum entanglement and position–momentum entropic squeezing of a moving lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. Journal of Physics B: Atomic, Molecular and Optical Physics 46, 145506 (2013). URL https://dx.doi.org/10.1088/0953-4075/46/14/145506.
- and and. Entropy squeezing and atomic inversion in the k-photon jaynes—cummings model in the presence of the stark shift and a kerr medium: A full nonlinear approach. Chinese Physics B 23, 074203 (2014). URL https://dx.doi.org/10.1088/1674-1056/23/7/074203.
- Bužek, V. Light squeezing in the jaynes-cummings model with intensity-dependent coupling. Journal of Modern Optics 36, 1151–1162 (1989). URL https://doi.org/10.1080/09500348914551181.
- Bužek, V. Jaynes-cummings model with intensity-dependent coupling interacting with holstein-primakoff su(1,1) coherent state. Phys. Rev. A 39, 3196–3199 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.39.3196.
- Emission spectra for the jaynes-cummings model with intensity-dependent coupling. Quantum Optics: Journal of the European Optical Society Part B 2, 147 (1990). URL https://dx.doi.org/10.1088/0954-8998/2/2/005.
- Naderi, M. H. The jaynes–cummings model beyond the rotating-wave approximation as an intensity-dependent model: quantum statistical and phase properties. Journal of Physics A: Mathematical and Theoretical 44, 055304 (2011). URL https://dx.doi.org/10.1088/1751-8113/44/5/055304.
- A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent jaynes-cummings model. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 32, 397–408 (2005). URL https://doi.org/10.1140/epjd/e2004-00197-8.
- The multiquantum intensity-dependent jaynes–cummings model with the counterrotating terms. Physica A: Statistical Mechanics and its Applications 265, 557–564 (1999). URL https://www.sciencedirect.com/science/article/pii/S0378437198006499.
- Exact eigenstates of the intensity-dependent jaynes–cummings model with the counter-rotating term. Physica A: Statistical Mechanics and its Applications 275, 463–474 (2000). URL https://www.sciencedirect.com/science/article/pii/S037843719900401X.
- Entanglement dynamics of the double intensity-dependent coupling jaynes-cummings models. International Journal of Theoretical Physics 51, 778–786 (2012). URL https://doi.org/10.1007/s10773-011-0957-x.
- Nonlinear jaynes-cummings model. Phys. Rev. A 45, 6816–6828 (1992). URL https://link.aps.org/doi/10.1103/PhysRevA.45.6816.
- Dynamical evolution of the two-photon jaynes-cummings model in a kerr-like medium. Phys. Rev. A 45, 5056–5060 (1992). URL https://link.aps.org/doi/10.1103/PhysRevA.45.5056.
- Quasiprobability distributions for the cavity-damped jaynes-cummings model with an additional kerr medium. Phys. Rev. A 44, 4623–4632 (1991). URL https://link.aps.org/doi/10.1103/PhysRevA.44.4623.
- Dynamics of entanglement in a two-mode nonlinear jaynes-cummings mode. arXiv preprint arXiv:0907.2992 (2009). URL https://doi.org/10.48550/arXiv.0907.2992.
- Sivakumar, S. Nonlinear jaynes–cummings model of atom–field interaction. International Journal of Theoretical Physics 43, 2405–2421 (2004). URL https://doi.org/10.1007/s10773-004-7707-2.
- The entanglement and second-order coherence function in a two-atom nonlinear jaynes-cummings model. Physica Scripta 97, 035101 (2022). URL https://dx.doi.org/10.1088/1402-4896/ac4cfe.
- Strong long-range spin-spin coupling via a kerr magnon interface. Phys. Rev. B 105, 245310 (2022). URL https://link.aps.org/doi/10.1103/PhysRevB.105.245310.
- Intrinsic decoherence in jaynes-cummings model with heisenberg exchange interaction. The European Physical Journal D 71, 1–4 (2017). URL https://doi.org/10.1140/epjd/e2017-80408-y.
- Cross-kerr effect on an optomechanical system. Phys. Rev. A 93, 023844 (2016). URL https://link.aps.org/doi/10.1103/PhysRevA.93.023844.
- Entanglement analysis of a two-atom nonlinear jaynes–cummings model with nondegenerate two-photon transition, kerr nonlinearity, and two-mode stark shift. Laser Physics 24, 125203 (2014). URL https://dx.doi.org/10.1088/1054-660X/24/12/125203.
- Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed kerr medium, and detuning effects. J. Opt. Soc. Am. B 30, 2810–2818 (2013). URL https://opg.optica.org/josab/abstract.cfm?URI=josab-30-11-2810.
- Generation and nonclassicality of entangled states via the interaction of two three-level atoms with a quantized cavity field assisted by a driving external classical field. Quantum Information Processing 14, 1279–1303 (2015). URL https://doi.org/10.1007/s11128-015-0915-2.
- Atomic inversion and entanglement dynamics for squeezed coherent thermal states in the jaynes-cummings model. International Journal of Theoretical Physics 62, 1–19 (2023). URL https://doi.org/10.1007/s10773-023-05389-7.
- Squeezed states with thermal noise. i. photon-number statistics. Phys. Rev. A 47, 4474–4486 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.4474.
- Squeezed states with thermal noise. ii. damping and photon counting. Phys. Rev. A 47, 4487–4495 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.4487.
- Squeezed coherent thermal state and its photon number distribution. Acta Physica Sinica (Overseas Edition) 6, 681 (1997). URL https://doi.org/10.1088/1004-423x/6/9/006.
- Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963). URL https://link.aps.org/doi/10.1103/PhysRev.131.2766.
- Wootters, W. K. Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001). URL https://arxiv.org/pdf/quant-ph/9709029.
- Wei, T.-C. et al. Maximal entanglement versus entropy for mixed quantum states. Physical Review A 67, 022110 (2003). URL https://link.aps.org/doi/10.1103/PhysRevA.67.022110.
- Photon-number distributions for fields with gaussian wigner functions. Phys. Rev. A 40, 6095–6098 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.6095.
- Many-photon processes with the participation of squeezed light. Phys. Rev. A 36, 1288–1292 (1987). URL https://link.aps.org/doi/10.1103/PhysRevA.36.1288.
- Vourdas, A. Superposition of squeezed coherent states with thermal light. Phys. Rev. A 34, 3466–3469 (1986). URL https://link.aps.org/doi/10.1103/PhysRevA.34.3466.
- Characterization of thermal coherent and thermal squeezed states. Annals of Physics 209, 216–230 (1991). URL https://www.sciencedirect.com/science/article/pii/000349169190360K.
- Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494–2503 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.2494.
- Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986). URL https://link.aps.org/doi/10.1103/RevModPhys.58.1001.
- Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.5138.
- Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999). URL https://link.aps.org/doi/10.1103/PhysRevA.61.010303.
- Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000). URL https://link.aps.org/doi/10.1103/PhysRevA.61.022309.
- Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.80.869.
- Quantum teleportation with squeezed vacuum states. Phys. Rev. A 60, 937–942 (1999). URL https://link.aps.org/doi/10.1103/PhysRevA.60.937.
- Distribution functions in physics: Fundamentals. Physics Reports 106, 121–167 (1984). URL https://www.sciencedirect.com/science/article/pii/0370157384901601.
- Schleich, W. P. Quantum Optics in Phase Space (Wiley-VCH, 2001).
- Agarwal, G. S. Quantum Optics (Cambridge University Press, 2013).
- Thermal entanglement between two two-level atoms in a two-photon jaynes-cummings model with an added kerr medium. International Journal of Theoretical Physics 57, 3396–3409 (2018). URL https://doi.org/10.1007/s10773-018-3853-9.
- Dynamics of entanglement and non-classicality features of a single-mode nonlinear jaynes–cummings model. Chaos, Solitons & Fractals 126, 106–115 (2019). URL https://www.sciencedirect.com/science/article/pii/S0960077919302036.
- Linear entropy in the jaynes–cummings model with a kerr nonlinearity. Optics Communications 266, 727–731 (2006). URL https://www.sciencedirect.com/science/article/pii/S0030401806005505.
- Asymptotic entanglement sudden death in two atoms with dipole–dipole and ising interactions coupled to a radiation field at non-zero detuning. Entropy 23 (2021). URL https://www.mdpi.com/1099-4300/23/5/629.
- Effect of dipole interaction and phase-interrupting collisions on the collapse-and-revival phenomenon in the jaynes-cummings model. Phys. Rev. A 44, 2135–2140 (1991). URL https://link.aps.org/doi/10.1103/PhysRevA.44.2135.
- The influence of dipole-dipole interaction on entanglement of two superconducting qubits in the framework of double jaynes-cummins model. Journal of Physics: Conference Series 917, 062011 (2017). URL https://dx.doi.org/10.1088/1742-6596/917/6/062011.
- Nonlinear jaynes–cummings model for two interacting two-level atoms. Journal of Physics B: Atomic, Molecular and Optical Physics 49, 165503 (2016). URL https://dx.doi.org/10.1088/0953-4075/49/16/165503.
- Normal and abnormal thermalization indicators in a one-dimensional low-density jaynes-cummings hubbard model with and without dipole-dipole interaction. Phys. Rev. E 106, 064107 (2022). URL https://link.aps.org/doi/10.1103/PhysRevE.106.064107.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.