Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The role of thermal and squeezed photons in the entanglement dynamics of the double Jaynes-Cummings model (2310.13918v2)

Published 21 Oct 2023 in quant-ph

Abstract: The effects of squeezed photons and thermal photons on the entanglement dynamics of atom-atom, atom-field and field-field subsystems are studied for the double Jaynes-Cummings model. For this purpose, squeezed coherent states and Glauber-Lachs states of radiation are chosen as field states. For the atomic states, we choose one of the Bell state as pure state and a Werner-type state as mixed state. Werner-type state is used to understand the effects of mixedness on entanglement. To measure the entanglement between the two atoms, Wootters' concurrence is used; whereas for the atom-field and field-field subsystems, negativity is chosen. The squeezed photons and thermal photons create, destroy and transfer entanglement within various subsystems. Also, the addition of squeezed photons and thermal photons either lengthens or shortens the duration of entanglement sudden deaths (ESD) associated with atom-atom, atom-field and field-field entanglement dynamics in a complementary way. The effects of Ising-type interaction, detuning and Kerr-nonlinearity on the entanglement dynamics are studied. Each of these interactions removes the ESDs associated with various subsystems. We show that new entanglements are created in this atom-field system by introducing Ising-type interaction between the two atoms. With proper choice of the parameters corresponding to Ising-type interaction, detuning and Kerr-nonliearity, entanglement can be transferred among various subsystems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (90)
  1. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). URL https://link.aps.org/doi/10.1103/RevModPhys.81.865.
  2. Open quantum systems. International Journal of Modern Physics E 3, 635–714 (1994). URL https://doi.org/10.1142/S0218301394000164.
  3. Dynamics of open quantum systems initially entangled with environment: Beyond the kraus representation. Phys. Rev. A 64, 062106 (2001). URL https://link.aps.org/doi/10.1103/PhysRevA.64.062106.
  4. Dynamics of initially entangled open quantum systems. Phys. Rev. A 70, 052110 (2004). URL https://link.aps.org/doi/10.1103/PhysRevA.70.052110.
  5. Non-markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007). URL https://link.aps.org/doi/10.1103/PhysRevLett.99.160502.
  6. Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-markovianity. Phys. Rev. A 83, 022109 (2011). URL https://link.aps.org/doi/10.1103/PhysRevA.83.022109.
  7. Xu, J.-S. et al. Experimental recovery of quantum correlations in absence of system-environment back-action. Nature communications 4, 2851 (2013). URL https://doi.org/10.1038/ncomms3851.
  8. Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014). URL https://link.aps.org/doi/10.1103/PhysRevB.90.054304.
  9. Dajka, J. Disentanglement of qubits in classical limit of interaction. International Journal of Theoretical Physics 53, 870–880 (2014). URL https://doi.org/10.1007/s10773-013-1876-9.
  10. Open-system dynamics of entanglement:a key issues review. Reports on Progress in Physics 78, 042001 (2015). URL https://dx.doi.org/10.1088/0034-4885/78/4/042001.
  11. Harnessing non-markovian quantum memory by environmental coupling. Phys. Rev. A 92, 012315 (2015). URL https://link.aps.org/doi/10.1103/PhysRevA.92.012315.
  12. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). URL https://link.aps.org/doi/10.1103/PhysRevLett.70.1895.
  13. Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.69.2881.
  14. Ekert, A. K. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991). URL https://link.aps.org/doi/10.1103/PhysRevLett.67.661.
  15. Exact mapping of the 2+1212+12 + 1 dirac oscillator onto the jaynes-cummings model: Ion-trap experimental proposal. Phys. Rev. A 76, 041801 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.76.041801.
  16. Lv, D. et al. Reconstruction of the jaynes-cummings field state of ionic motion in a harmonic trap. Phys. Rev. A 95, 043813 (2017). URL https://link.aps.org/doi/10.1103/PhysRevA.95.043813.
  17. Time-dependent nonlinear jaynes-cummings dynamics of a trapped ion. Phys. Rev. A 97, 043806 (2018). URL https://link.aps.org/doi/10.1103/PhysRevA.97.043806.
  18. Quantum collapse and revival in the motion of a single trapped ion. Phys. Rev. A 49, 1202–1207 (1994). URL https://link.aps.org/doi/10.1103/PhysRevA.49.1202.
  19. Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010). URL https://link.aps.org/doi/10.1103/PhysRevA.82.053832.
  20. Upper bounded and sliced jaynes– and anti-jaynes–cummings hamiltonians and liouvillians in cavity quantum electrodynamics. Journal of Modern Optics 62, 1561–1569 (2015). URL https://doi.org/10.1080/09500340.2015.1051150. https://doi.org/10.1080/09500340.2015.105115.
  21. Cavity quantum electrodynamics in the ultrastrong coupling regime. Scientia Iranica 18, 820–826 (2011). URL https://www.sciencedirect.com/science/article/pii/S1026309811001143.
  22. Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nature Physics 6, 772–776 (2010). URL https://doi.org/10.1038/nphys1730.
  23. From cavity to circuit quantum electrodynamics. Nature Physics 16, 243–246 (2020). URL https://doi.org/10.1038/s41567-020-0812-1.
  24. Fink, J. et al. Climbing the jaynes–cummings ladder and observing its nonlinearity in a cavity qed system. Nature 454, 315–318 (2008). URL https://doi.org/10.1038/nature07112.
  25. Reed, M. D. et al. High-fidelity readout in circuit quantum electrodynamics using the jaynes-cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010). URL https://link.aps.org/doi/10.1103/PhysRevLett.105.173601.
  26. Architecture dependence of photon antibunching in cavity quantum electrodynamics. Phys. Rev. A 92, 023810 (2015). URL https://link.aps.org/doi/10.1103/PhysRevA.92.023810.
  27. Characterizing polariton states in the nondispersive regime of circuit quantum electrodynamics. Physical Review A 108 (2023). URL http://dx.doi.org/10.1103/PhysRevA.108.033703.
  28. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE 51, 89–109 (1963). URL https://doi.org/10.1109/PROC.1963.1664.
  29. Quantum collapse and revival of rydberg atoms in cavities of arbitrary q at finite temperature. IEEE journal of quantum electronics 24, 1331–1337 (1988). URL https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=971.
  30. Gea-Banacloche, J. Collapse and revival of the state vector in the jaynes-cummings model: An example of state preparation by a quantum apparatus. Physical review letters 65, 3385 (1990). URL https://link.aps.org/doi/10.1103/PhysRevLett.65.3385.
  31. A resummation formula for collapse and revival in the jaynes–cummings model. Journal of Physics A: Mathematical and Theoretical 42, 195304 (2009). URL https://dx.doi.org/10.1088/1751-8113/42/19/195304.
  32. Quantum collapse and revival in the motion of a single trapped ion. Physical Review A 49, 1202 (1994). URL https://link.aps.org/doi/10.1103/PhysRevA.49.1202.
  33. Quantum entanglement in double quantum systems and jaynes-cummings model. Nanoscale research letters 12, 1–9 (2017). URL https://doi.org/10.1186/s11671-017-1985-0.
  34. k-photon jaynes-cummings model with coherent atomic preparation: Squeezing and coherence. Physical Review A 40, 7113 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.7113.
  35. Quantum collapse-revival effect in a supersymmetric jaynes–cummings model and its possible application in supersymmetric qubits. Physica Scripta 95, 055104 (2020). URL https://dx.doi.org/10.1088/1402-4896/ab5c6e.
  36. Sudden death of entanglement of two jaynes-cummings atoms. Journal of Physics B Atomic Molecular and Optical Physics 39 (2006). URL https://www.researchgate.net/publication/2197779.
  37. Sudden death of entanglement of two jaynes–cummings atoms. Journal of Physics B: Atomic, Molecular and Optical Physics 39, S621 (2006). URL https://dx.doi.org/10.1088/0953-4075/39/15/S09.
  38. Quantum open system theory: Bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006). URL https://link.aps.org/doi/10.1103/PhysRevLett.97.140403.
  39. Sudden death of entanglement. Science 323, 598–601 (2009). URL https://www.science.org/doi/abs/10.1126/science.1167343. https://www.science.org/doi/pdf/10.1126/science.1167343.
  40. Sudden death of entanglement: Classical noise effects. Optics Communications 264, 393–397 (2006). URL https://www.sciencedirect.com/science/article/pii/S0030401806005104. Quantum Control of Light and Matter.
  41. Pairwise concurrence dynamics: a four-qubit model. Journal of Physics B: Atomic, Molecular and Optical Physics 40, S45 (2007). URL https://dx.doi.org/10.1088/0953-4075/40/9/S02.
  42. Evolution from entanglement to decoherence of bipartite mixed” x” states. arXiv preprint quant-ph/0503089 (2005). URL https://doi.org/10.48550/arXiv.quant-ph/0503089.
  43. Sudden death of entanglement. Science 323, 598–601 (2009). URL https://www.science.org/doi/full/10.1126/science.1167343.
  44. The end of an entanglement. Science 316, 555–557 (2007). URL https://www.science.org/doi/abs/10.1126/science.1142654. https://www.science.org/doi/pdf/10.1126/science.1142654.
  45. Entanglement dynamics of two atoms in the squeezed vacuum and the coherent fields. International Journal of Theoretical Physics 59, 730–742 (2020). URL https://doi.org/10.1007/s10773-019-04359-2.
  46. Entanglement dynamics of the double intensity-dependent coupling jaynes-cummings models. International Journal of Theoretical Physics 51, 778–786 (2012). URL https://doi.org/10.1007/s10773-011-0957-x.
  47. Effects of cavity–cavity interaction on the entanglement dynamics of a generalized double jaynes–cummings model. Journal of Physics B: Atomic, Molecular and Optical Physics 51, 045501 (2018). URL https://doi.org/10.1088/1361-6455/aaa2cf.
  48. Population inversion and entanglement in single and double glassy jaynes-cummings models. Phys. Rev. A 101, 053805 (2020). URL https://link.aps.org/doi/10.1103/PhysRevA.101.053805.
  49. Influence of an external classical field on the interaction between a field and an atom in presence of intrinsic damping. International Journal of Theoretical Physics 57, 2787–2801 (2018). URL https://doi.org/10.1007/s10773-018-3799-y.
  50. Laha, P. Dynamics of a multipartite hybrid quantum system with beamsplitter, dipole-dipole. Journal of the Optical Society of America B 7, 1–2 (2023). URL https://doi.org/10.1364/JOSAB.489223.
  51. Photon-number distributions for fields with gaussian wigner functions. Phys. Rev. A 40, 6095–6098 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.6095.
  52. Many-photon processes with the participation of squeezed light. Phys. Rev. A 36, 1288–1292 (1987). URL https://link.aps.org/doi/10.1103/PhysRevA.36.1288.
  53. Squeezed states with thermal noise. i. photon-number statistics. Phys. Rev. A 47, 4474–4486 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.4474.
  54. Squeezed states with thermal noise. ii. damping and photon counting. Phys. Rev. A 47, 4487–4495 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.4487.
  55. Vourdas, A. Superposition of squeezed coherent states with thermal light. Phys. Rev. A 34, 3466–3469 (1986). URL https://link.aps.org/doi/10.1103/PhysRevA.34.3466.
  56. Squeezed coherent thermal state and its photon number distribution. Acta Physica Sinica (Overseas Edition) 6, 681 (1997). URL https://doi.org/10.1088/1004-423x/6/9/006.
  57. Characterization of thermal coherent and thermal squeezed states. Annals of Physics 209, 216–230 (1991). URL https://www.sciencedirect.com/science/article/pii/000349169190360K.
  58. Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494–2503 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.2494.
  59. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986). URL https://link.aps.org/doi/10.1103/RevModPhys.58.1001.
  60. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.5138.
  61. Ralph, T. C. Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999). URL https://link.aps.org/doi/10.1103/PhysRevA.61.010303.
  62. Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000). URL https://link.aps.org/doi/10.1103/PhysRevA.61.022309.
  63. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.80.869.
  64. Quantum teleportation with squeezed vacuum states. Phys. Rev. A 60, 937–942 (1999). URL https://link.aps.org/doi/10.1103/PhysRevA.60.937.
  65. Glauber-lachs version of the jaynes-cummings interaction of a two-level atom. Phys. Rev. A 45, 5301–5304 (1992). URL https://link.aps.org/doi/10.1103/PhysRevA.45.5301.
  66. Sivakumar, S. Effect of thermal noise on atom-field interaction: Glauber-lachs versus mixing. The European Physical Journal D 66, 1–7 (2012). URL https://doi.org/10.1140/epjd/e2012-30399-2.
  67. Werner, R. F. Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989). URL https://link.aps.org/doi/10.1103/PhysRevA.40.4277.
  68. Czerwinski, A. Quantifying entanglement of two-qubit werner states. Communications in Theoretical Physics 73, 085101 (2021).
  69. Filipowicz, P. Quantum revivals in the jaynes-cummings model. Journal of Physics A: Mathematical and General 19, 3785 (1986). URL https://dx.doi.org/10.1088/0305-4470/19/18/024.
  70. Finite-q cavity electrodynamics: Dynamical and statistical aspects. Phys. Rev. A 35, 3433–3449 (1987). URL https://link.aps.org/doi/10.1103/PhysRevA.35.3433.
  71. Generation and characterization of werner states and maximally entangled mixed states by a universal source of entanglement. Phys. Rev. Lett. 92, 177901 (2004). URL https://link.aps.org/doi/10.1103/PhysRevLett.92.177901.
  72. Czerwinski, A. Quantifying entanglement of two-qubit werner states. Communications in Theoretical Physics 73, 085101 (2021). URL https://dx.doi.org/10.1088/1572-9494/ac01e1.
  73. Entanglement teleportation via werner states. Phys. Rev. Lett. 84, 4236–4239 (2000). URL https://link.aps.org/doi/10.1103/PhysRevLett.84.4236.
  74. Yeo, Y. Teleportation via thermally entangled states of a two-qubit heisenberg xx chain. Phys. Rev. A 66, 062312 (2002). URL https://link.aps.org/doi/10.1103/PhysRevA.66.062312.
  75. Separability of entangled qutrits in noisy channels. Phys. Rev. A 76, 052306 (2007). URL https://link.aps.org/doi/10.1103/PhysRevA.76.052306.
  76. Wootters, W. K. Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001).
  77. Wei, T.-C. et al. Maximal entanglement versus entropy for mixed quantum states. Physical Review A 67, 022110 (2003). URL https://link.aps.org/doi/10.1103/PhysRevA.67.022110.
  78. Lambropoulos, P. Fundamentals of quantum optics and quantum information (Springer, 2007).
  79. Nonlinear jaynes-cummings model. Phys. Rev. A 45, 6816–6828 (1992). URL https://link.aps.org/doi/10.1103/PhysRevA.45.6816.
  80. Dynamical evolution of the two-photon jaynes-cummings model in a kerr-like medium. Phys. Rev. A 45, 5056–5060 (1992). URL https://link.aps.org/doi/10.1103/PhysRevA.45.5056.
  81. Quasiprobability distributions for the cavity-damped jaynes-cummings model with an additional kerr medium. Phys. Rev. A 44, 4623–4632 (1991). URL https://link.aps.org/doi/10.1103/PhysRevA.44.4623.
  82. Dynamics of entanglement in a two-mode nonlinear jaynes-cummings mode. arXiv preprint arXiv:0907.2992 (2009). URL https://doi.org/10.48550/arXiv.0907.2992.
  83. Sivakumar, S. Nonlinear jaynes–cummings model of atom–field interaction. International Journal of Theoretical Physics 43, 2405–2421 (2004). URL https://doi.org/10.1007/s10773-004-7707-2.
  84. The entanglement and second-order coherence function in a two-atom nonlinear jaynes-cummings model. Physica Scripta 97, 035101 (2022). URL https://dx.doi.org/10.1088/1402-4896/ac4cfe.
  85. Strong long-range spin-spin coupling via a kerr magnon interface. Phys. Rev. B 105, 245310 (2022). URL https://link.aps.org/doi/10.1103/PhysRevB.105.245310.
  86. Entanglement analysis of a two-atom nonlinear jaynes–cummings model with nondegenerate two-photon transition, kerr nonlinearity, and two-mode stark shift. Laser Physics 24, 125203 (2014). URL https://dx.doi.org/10.1088/1054-660X/24/12/125203.
  87. Intrinsic decoherence in jaynes-cummings model with heisenberg exchange interaction. The European Physical Journal D 71, 1–4 (2017). URL https://doi.org/10.1140/epjd/e2017-80408-y.
  88. Cross-kerr effect on an optomechanical system. Phys. Rev. A 93, 023844 (2016). URL https://link.aps.org/doi/10.1103/PhysRevA.93.023844.
  89. Thermal entanglement between two two-level atoms in a two-photon jaynes-cummings model with an added kerr medium. International Journal of Theoretical Physics 57, 3396–3409 (2018). URL https://doi.org/10.1007/s10773-018-3853-9.
  90. Dynamics of entanglement and non-classicality features of a single-mode nonlinear jaynes–cummings model. Chaos, Solitons & Fractals 126, 106–115 (2019). URL https://www.sciencedirect.com/science/article/pii/S0960077919302036.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube