Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Analysis of Advanced Feature Matching Algorithms in Challenging High Spatial Resolution Optical Satellite Stereo Scenarios (2405.06246v1)

Published 10 May 2024 in cs.CV

Abstract: Feature matching determines the orientation accuracy for the High Spatial Resolution (HSR) optical satellite stereos, subsequently impacting several significant applications such as 3D reconstruction and change detection. However, the matching of off-track HSR optical satellite stereos often encounters challenging conditions including wide-baseline observation, significant radiometric differences, multi-temporal changes, varying spatial resolutions, inconsistent spectral resolution, and diverse sensors. In this study, we evaluate various advanced feature matching algorithms for HSR optical satellite stereos. Utilizing a specially constructed dataset from five satellites across six challenging scenarios, HSROSS Dataset, we conduct a comparative analysis of four algorithms: the traditional SIFT, and deep-learning based methods including SuperPoint + SuperGlue, SuperPoint + LightGlue, and LoFTR. Our findings highlight overall superior performance of SuperPoint + LightGlue in balancing robustness, accuracy, distribution, and efficiency, showcasing its potential in complex HSR optical satellite scenarios.

Summary

We haven't generated a summary for this paper yet.