Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Extension of graph-accelerated non-intrusive polynomial chaos to high-dimensional uncertainty quantification through the active subspace method (2405.05556v1)

Published 9 May 2024 in cs.CE

Abstract: The recently introduced graph-accelerated non-intrusive polynomial chaos (NIPC) method has shown effectiveness in solving a broad range of uncertainty quantification (UQ) problems with multidisciplinary systems. It uses integration-based NIPC to solve the UQ problem and generates the quadrature rule in a desired tensor structure, so that the model evaluations can be efficiently accelerated through the computational graph transformation method, Accelerated Model evaluations on Tensor grids using Computational graph transformations (AMTC). This method is efficient when the model's computational graph possesses a certain type of sparsity which is commonly the case in multidisciplinary problems. However, it faces limitations in high-dimensional cases due to the curse of dimensionality. To broaden its applicability in high-dimensional UQ problems, we propose AS-AMTC, which integrates the AMTC approach with the active subspace (AS) method, a widely-used dimension reduction technique. In developing this new method, we have also developed AS-NIPC, linking integration-based NIPC with the AS method for solving high-dimensional UQ problems. AS-AMTC incorporates rigorous approaches to generate orthogonal polynomial basis functions for lower-dimensional active variables and efficient quadrature rules to estimate their coefficients. The AS-AMTC method extends AS-NIPC by generating a quadrature rule with a desired tensor structure. This allows the AMTC method to exploit the computational graph sparsity, leading to efficient model evaluations. In an 81-dimensional UQ problem derived from an air-taxi trajectory optimization scenario, AS-NIPC demonstrates a 30% decrease in relative error compared to the existing methods, while AS-AMTC achieves an 80% reduction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Wan, H.-P., Mao, Z., Todd, M. D., and Ren, W.-X., “Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel,” Engineering Structures, Vol. 75, 2014, pp. 577–589. 10.1016/j.engstruct.2014.06.028.
  2. Hu, Z., Mahadevan, S., and Ao, D., “Uncertainty aggregation and reduction in structure–material performance prediction,” Computational Mechanics, Vol. 61, No. 1, 2018, pp. 237–257. 10.1007/s00466-017-1448-6.
  3. Michelmore, R., Wicker, M., Laurenti, L., Cardelli, L., Gal, Y., and Kwiatkowska, M., “Uncertainty quantification with statistical guarantees in end-to-end autonomous driving control,” 2020 IEEE international conference on robotics and automation (ICRA), IEEE, 2020, pp. 7344–7350. 10.1109/ICRA40945.2020.9196844.
  4. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., et al., “A review of uncertainty quantification in deep learning: Techniques, applications and challenges,” Information Fusion, Vol. 76, 2021, pp. 243–297. 10.1016/j.inffus.2021.05.008.
  5. Ng, L. W., and Willcox, K. E., “Monte Carlo information-reuse approach to aircraft conceptual design optimization under uncertainty,” Journal of Aircraft, Vol. 53, No. 2, 2016, pp. 427–438. 10.2514/1.C033352.
  6. Wang, B., Orndorff, N. C., Joshy, A. J., and Hwang, J. T., “Graph-accelerated large-scale multidisciplinary design optimization under uncertainty of a laser-beam-powered aircraft,” AIAA SCITECH 2024 Forum, 2024a, p. 0169. 10.2514/6.2024-0169.
  7. Wooldridge, J. M., “Applications of generalized method of moments estimation,” Journal of Economic perspectives, Vol. 15, No. 4, 2001, pp. 87–100. 10.1257/jep.15.4.87.
  8. Peherstorfer, B., Willcox, K., and Gunzburger, M., “Optimal model management for multifidelity Monte Carlo estimation,” SIAM Journal on Scientific Computing, Vol. 38, No. 5, 2016, pp. A3163–A3194. 10.1137/15M1046472.
  9. Peherstorfer, B., Willcox, K., and Gunzburger, M., “Survey of multifidelity methods in uncertainty propagation, inference, and optimization,” Siam Review, Vol. 60, No. 3, 2018, pp. 550–591. 10.1137/16M1082469.
  10. Tabandeh, A., Jia, G., and Gardoni, P., “A review and assessment of importance sampling methods for reliability analysis,” Structural Safety, Vol. 97, 2022, p. 102216. 10.1016/j.strusafe.2022.102216.
  11. Kaymaz, I., “Application of kriging method to structural reliability problems,” Structural safety, Vol. 27, No. 2, 2005, pp. 133–151. 10.1016/j.strusafe.2004.09.001.
  12. Hu, Z., and Mahadevan, S., “A single-loop kriging surrogate modeling for time-dependent reliability analysis,” Journal of Mechanical Design, Vol. 138, No. 6, 2016. 10.1115/1.4033428.
  13. Rumpfkeil, M. P., “Optimizations under uncertainty using gradients, Hessians, and surrogate models,” AIAA journal, Vol. 51, No. 2, 2013, pp. 444–451. 10.2514/1.J051847.
  14. Hosder, S., Walters, R., and Perez, R., “A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations,” 44th AIAA aerospace sciences meeting and exhibit, 2006, p. 891. 10.2514/6.2006-891.
  15. Jones, B. A., Doostan, A., and Born, G. H., “Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 430–444. 10.2514/1.57599.
  16. Keshavarzzadeh, V., Fernandez, F., and Tortorelli, D. A., “Topology optimization under uncertainty via non-intrusive polynomial chaos expansion,” Computer Methods in Applied Mechanics and Engineering, Vol. 318, 2017, pp. 120–147. 10.1016/j.cma.2017.01.019.
  17. Xiu, D., and Hesthaven, J. S., “High-order collocation methods for differential equations with random inputs,” SIAM Journal on Scientific Computing, Vol. 27, No. 3, 2005, pp. 1118–1139. 10.1137/040615201.
  18. Babuška, I., Nobile, F., and Tempone, R., “A stochastic collocation method for elliptic partial differential equations with random input data,” SIAM Journal on Numerical Analysis, Vol. 45, No. 3, 2007, pp. 1005–1034. 10.1137/05064514.
  19. Wang, B., Sperry, M., Gandarillas, V. E., and Hwang, J. T., “Accelerating model evaluations in uncertainty propagation on tensor grids using computational graph transformations,” Aerospace Science and Technology, Vol. 145, 2024b, p. 108843. 10.1016/j.ast.2023.108843.
  20. Wang, B., Orndorff, N. C., and Hwang, J. T., “Graph-accelerated non-intrusive polynomial chaos expansion using partially tensor-structured quadrature rules,” arXiv preprint arXiv:2403.15614, 2024c. 10.48550/arXiv.2403.15614.
  21. Wang, B., Sperry, M., Gandarillas, V. E., and Hwang, J. T., “Efficient uncertainty propagation through computational graph modification and automatic code generation,” AIAA AVIATION 2022 Forum, 2022, p. 3997. 10.2514/6.2022-3997.
  22. Morio, J., “Global and local sensitivity analysis methods for a physical system,” European journal of physics, Vol. 32, No. 6, 2011, p. 1577. 10.1088/0143-0807/32/6/011.
  23. Abdi, H., and Williams, L. J., “Principal component analysis,” Wiley interdisciplinary reviews: computational statistics, Vol. 2, No. 4, 2010, pp. 433–459. 10.1002/wics.101.
  24. Chun, H., and Keleş, S., “Sparse partial least squares regression for simultaneous dimension reduction and variable selection,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 72, No. 1, 2010, pp. 3–25. 10.1111/j.1467-9868.2009.00723.x.
  25. Constantine, P. G., Dow, E., and Wang, Q., “Active subspace methods in theory and practice: applications to kriging surfaces,” SIAM Journal on Scientific Computing, Vol. 36, No. 4, 2014, pp. A1500–A1524. 10.1137/130916138.
  26. Sobol, I. M., “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates,” Mathematics and computers in simulation, Vol. 55, No. 1-3, 2001, pp. 271–280. 10.1016/S0378-4754(00)00270-6.
  27. Glaws, A., and Constantine, P. G., “Gaussian quadrature and polynomial approximation for one-dimensional ridge functions,” SIAM Journal on Scientific Computing, Vol. 41, No. 5, 2019, pp. S106–S128. 10.1137/18M1194894.
  28. He, W., Li, G., Zhong, C., and Wang, Y., “A novel data-driven sparse polynomial chaos expansion for high-dimensional problems based on active subspace and sparse Bayesian learning,” Structural and Multidisciplinary Optimization, Vol. 66, No. 1, 2023, p. 29. 10.1007/s00158-022-03475-8.
  29. Xiu, D., and Karniadakis, G. E., “The Wiener–Askey polynomial chaos for stochastic differential equations,” SIAM journal on scientific computing, Vol. 24, No. 2, 2002, pp. 619–644. 10.1137/S1064827501387826.
  30. Rahman, S., “Wiener–Hermite polynomial expansion for multivariate Gaussian probability measures,” Journal of Mathematical Analysis and Applications, Vol. 454, No. 1, 2017, pp. 303–334. 10.1016/j.jmaa.2017.04.062.
  31. Lee, D., and Rahman, S., “Practical uncertainty quantification analysis involving statistically dependent random variables,” Applied Mathematical Modelling, Vol. 84, 2020, pp. 324–356. 10.1016/j.apm.2020.03.041.
  32. Eldred, M., and Burkardt, J., “Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification,” 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2009, p. 976. 10.2514/6.2009-976.
  33. Golub, G. H., and Welsch, J. H., “Calculation of Gauss quadrature rules,” Mathematics of computation, Vol. 23, No. 106, 1969, pp. 221–230.
  34. Smolyak, S. A., “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Doklady Akademii Nauk, Vol. 148, Russian Academy of Sciences, 1963, pp. 1042–1045.
  35. Keshavarzzadeh, V., Kirby, R. M., and Narayan, A., “Numerical integration in multiple dimensions with designed quadrature,” SIAM Journal on Scientific Computing, Vol. 40, No. 4, 2018, pp. A2033–A2061. 10.1137/17M1137875.
  36. Blatman, G., and Sudret, B., “Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach,” Comptes Rendus Mécanique, Vol. 336, No. 6, 2008, pp. 518–523. 10.1016/j.crme.2008.02.013.
  37. Tipireddy, R., and Ghanem, R., “Basis adaptation in homogeneous chaos spaces,” Journal of Computational Physics, Vol. 259, 2014, pp. 304–317. 10.1016/j.jcp.2013.12.009.
  38. Hampton, J., and Doostan, A., “Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies,” Journal of Computational Physics, Vol. 280, 2015, pp. 363–386. 10.1016/j.jcp.2014.09.019.
  39. Gandarillas, V., Joshy, A. J., Sperry, M. Z., Ivanov, A. K., and Hwang, J. T., “A graph-based methodology for constructing computational models that automates adjoint-based sensitivity analysis,” Structural and Multidisciplinary Optimization, accepted.
  40. Ben-Ari, E. N., and Steinberg, D. M., “Modeling data from computer experiments: an empirical comparison of kriging with MARS and projection pursuit regression,” Quality Engineering, Vol. 19, No. 4, 2007, pp. 327–338. 10.1080/08982110701580930.
  41. Orndorff, N. C., Sarojini, D., Scotzniovsky, L., Gill, H., Lee, S., Cheng, Z., Zhao, S., Mi, C., and Hwang, J. T., “Air-taxi transition trajectory optimization with physics-based models,” AIAA SCITECH 2023 Forum, 2023, p. 0324. 10.2514/6.2023-0324.
  42. Janson, L., Schmerling, E., and Pavone, M., “Monte Carlo motion planning for robot trajectory optimization under uncertainty,” Robotics Research: Volume 2, Springer, 2017, pp. 343–361. 10.1007/978-3-319-60916-4_20.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube