Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Graph-accelerated non-intrusive polynomial chaos expansion using partially tensor-structured quadrature rules for uncertainty quantification (2403.15614v2)

Published 22 Mar 2024 in cs.CE

Abstract: Recently, the graph-accelerated non-intrusive polynomial chaos (NIPC) method has been proposed for solving uncertainty quantification (UQ) problems. This method leverages the full-grid integration-based NIPC method to address UQ problems while employing the computational graph transformation approach, AMTC, to accelerate the tensor-grid evaluations. This method exhibits remarkable efficacy on a broad range of low-dimensional (three dimensions or less) UQ problems featuring multidisciplinary models. However, it often does not scale well with problem dimensions due to the exponential increase in the number of quadrature points when using the full-grid quadrature rule. To expand the applicability of this method to a broader range of UQ problems, this paper introduces a new framework for generating a tailored, partially tensor-structured quadrature rule to use with the graph-accelerated NIPC method. This quadrature rule, generated through the designed quadrature approach, possesses a tensor structure that is tailored for the computational model. The selection of the tensor structure is guided by an analysis of the computational graph, ensuring that the quadrature rule effectively capitalizes on the sparsity within the computational graph when paired with the AMTC method. This method has been tested on one 4D and one 6D UQ problem, both originating from aircraft design scenarios and featuring multidisciplinary models. Numerical results show that, when using with graph-accelerated NIPC method, our approach generates a partially tensor-structured quadrature rule that outperforms the full-grid Gauss quadrature and the designed quadrature methods (more than 40% reduction in computational costs) in both of the test problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Joslyn, S., and Savelli, S., “Communicating forecast uncertainty: Public perception of weather forecast uncertainty,” Meteorological Applications, Vol. 17, No. 2, 2010, pp. 180–195. 10.1002/met.190.
  2. Pappenberger, F., Beven, K. J., Hunter, N. M., Bates, P. D., Gouweleeuw, B. T., Thielen, J., and de Roo, A. P. J., “Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS),” Hydrology and Earth System Sciences, Vol. 9, No. 4, 2005, pp. 381–393. 10.5194/hess-9-381-2005.
  3. Hüllermeier, E., and Waegeman, W., “Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods,” Machine Learning, Vol. 110, 2021, pp. 457–506. 10.1007/s10994-021-05946-3.
  4. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., et al., “A review of uncertainty quantification in deep learning: Techniques, applications and challenges,” Information Fusion, Vol. 76, 2021, pp. 243–297.
  5. Wan, H.-P., Mao, Z., Todd, M. D., and Ren, W.-X., “Analytical uncertainty quantification for modal frequencies with structural parameter uncertainty using a Gaussian process metamodel,” Engineering Structures, Vol. 75, 2014, pp. 577–589. 10.1016/j.engstruct.2014.06.028.
  6. Hu, Z., Mahadevan, S., and Ao, D., “Uncertainty aggregation and reduction in structure–material performance prediction,” Computational Mechanics, Vol. 61, No. 1, 2018, pp. 237–257. 10.1007/s00466-017-1448-6.
  7. Ng, L. W., and Willcox, K. E., “Monte Carlo information-reuse approach to aircraft conceptual design optimization under uncertainty,” Journal of Aircraft, Vol. 53, No. 2, 2016, pp. 427–438. 10.2514/1.C033352.
  8. Wang, B., Orndorff, N. C., Joshy, A. J., and Hwang, J. T., “Graph-accelerated large-scale multidisciplinary design optimization under uncertainty of a laser-beam-powered aircraft,” AIAA SCITECH 2024 Forum, 2024a, p. 0169. 10.2514/6.2024-0169.
  9. Lim, D., Kim, H., and Yee, K., “Uncertainty propagation in flight performance of multirotor with parametric and model uncertainties,” Aerospace Science and Technology, Vol. 122, 2022, p. 107398. 10.1016/j.ast.2022.107398.
  10. Xiu, D., and Karniadakis, G. E., “The Wiener–Askey polynomial chaos for stochastic differential equations,” SIAM journal on scientific computing, Vol. 24, No. 2, 2002, pp. 619–644. 10.1137/S1064827501387826.
  11. Jones, B. A., Doostan, A., and Born, G. H., “Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 430–444. 10.2514/1.57599.
  12. Hosder, S., Walters, R., and Balch, M., “Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007, p. 1939. 10.2514/6.2007-1939.
  13. Blatman, G., and Sudret, B., “Adaptive sparse polynomial chaos expansion based on least angle regression,” Journal of computational Physics, Vol. 230, No. 6, 2011, pp. 2345–2367. 10.1016/j.jcp.2010.12.021.
  14. Keshavarzzadeh, V., Fernandez, F., and Tortorelli, D. A., “Topology optimization under uncertainty via non-intrusive polynomial chaos expansion,” Computer Methods in Applied Mechanics and Engineering, Vol. 318, 2017, pp. 120–147. 10.1016/j.cma.2017.01.019.
  15. Xiaojing, W., Zhang, W., Shufang, S., and Zhengyin, Y., “Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties,” Chinese Journal of Aeronautics, Vol. 31, No. 5, 2018, pp. 997–1011. 10.1016/j.cja.2018.03.011.
  16. Eldred, M., and Burkardt, J., “Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification,” 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2009, p. 976. 10.2514/6.2009-976.
  17. Golub, G. H., and Welsch, J. H., “Calculation of Gauss quadrature rules,” Mathematics of computation, Vol. 23, No. 106, 1969, pp. 221–230. 10.1090/S0025-5718-69-99647-1.
  18. Smolyak, S. A., “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Doklady Akademii Nauk, Vol. 148, Russian Academy of Sciences, 1963, pp. 1042–1045.
  19. Keshavarzzadeh, V., Kirby, R. M., and Narayan, A., “Numerical integration in multiple dimensions with designed quadrature,” SIAM Journal on Scientific Computing, Vol. 40, No. 4, 2018, pp. A2033–A2061. 10.1137/17M1137875.
  20. Wang, B., Sperry, M., Gandarillas, V. E., and Hwang, J. T., “Accelerating model evaluations in uncertainty propagation on tensor grids using computational graph transformations,” Aerospace Science and Technology, Vol. 145, 2024b, p. 108843. 10.1016/j.ast.2023.108843.
  21. Wiener, N., “The homogeneous chaos,” American Journal of Mathematics, Vol. 60, No. 4, 1938, pp. 897–936. 10.2307/2371268.
  22. Ghanem, R., “Ingredients for a general purpose stochastic finite elements implementation,” Computer methods in applied mechanics and engineering, Vol. 168, No. 1-4, 1999, pp. 19–34. 10.1016/S0045-7825(98)00106-6.
  23. Lee, D., and Rahman, S., “Practical uncertainty quantification analysis involving statistically dependent random variables,” Applied Mathematical Modelling, Vol. 84, 2020, pp. 324–356. 10.1016/j.apm.2020.03.041.
  24. Lüthen, N., Marelli, S., and Sudret, B., “Sparse polynomial chaos expansions: Literature survey and benchmark,” SIAM/ASA Journal on Uncertainty Quantification, Vol. 9, No. 2, 2021, pp. 593–649. 10.1137/20M1315774.
  25. Wang, B., Sperry, M., Gandarillas, V. E., and Hwang, J. T., “Efficient uncertainty propagation through computational graph modification and automatic code generation,” AIAA AVIATION 2022 Forum, 2022, p. 3997. 10.2514/6.2022-3997.
  26. Gandarillas, V., Joshy, A. J., Sperry, M. Z., Ivanov, A. K., and Hwang, J. T., “A graph-based methodology for constructing computational models that automates adjoint-based sensitivity analysis,” Structural and Multidisciplinary Optimization, (accepted).
  27. Sarojini, D., Ruh, M. L., Joshy, A. J., Yan, J., Ivanov, A. K., Scotzniovsky, L., Fletcher, A. H., Orndorff, N. C., Sperry, M., Gandarillas, V. E., et al., “Large-scale multidisciplinary design optimization of an evtol aircraft using comprehensive analysis,” AIAA SciTech 2023 Forum, 2023, p. 0146. 10.2514/6.2023-0146.
  28. Ruh, M. L., Fletcher, A., Sarojini, D., Sperry, M., Yan, J., Scotzniovsky, L., van Schie, S. P., Warner, M., Orndorff, N. C., Xiang, R., et al., “Large-scale multidisciplinary design optimization of a NASA air taxi concept using a comprehensive physics-based system model,” AIAA SCITECH 2024 Forum, 2024, p. 0771. 10.2514/6.2024-0771.
  29. Gandarillas, V., and Hwang, J. T., “TALOS: A toolbox for spacecraft conceptual design,” arXiv preprint arXiv:2303.14936, 2023. 10.48550/arXiv.2303.14936.
  30. Orndorff, N. C., Wang, B., Ruh, M. L., Fletcher, A., and Hwang, J. T., “Gradient-based sizing optimization of power-beaming-enabled aircraft,” AIAA AVIATION 2023 Forum, 2023a, p. 4019. 10.2514/6.2023-4019.
  31. Kim, I. I., McArthur, B., and Korevaar, E. J., “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Optical wireless communications III, Vol. 4214, Spie, 2001, pp. 26–37. 10.1117/12.417512.
  32. 10.2514/4.869112.
  33. Orndorff, N. C., Sarojini, D., Scotzniovsky, L., Gill, H., Lee, S., Cheng, Z., Zhao, S., Mi, C., and Hwang, J. T., “Air-taxi transition trajectory optimization with physics-based models,” AIAA SCITECH 2023 Forum, 2023b, p. 0324. 10.2514/6.2023-0324.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.