Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse approximation of data-driven Polynomial Chaos expansions: an induced sampling approach (2008.10121v1)

Published 23 Aug 2020 in math.NA and cs.NA

Abstract: One of the open problems in the field of forward uncertainty quantification (UQ) is the ability to form accurate assessments of uncertainty having only incomplete information about the distribution of random inputs. Another challenge is to efficiently make use of limited training data for UQ predictions of complex engineering problems, particularly with high dimensional random parameters. We address these challenges by combining data-driven polynomial chaos expansions with a recently developed preconditioned sparse approximation approach for UQ problems. The first task in this two-step process is to employ the procedure developed in (Ahlfeld et al. 2016) to construct an "arbitrary" polynomial chaos expansion basis using a finite number of statistical moments of the random inputs. The second step is a novel procedure to effect sparse approximation via $\ell1$ minimization in order to quantify the forward uncertainty. To enhance the performance of the preconditioned $\ell1$ minimization problem, we sample from the so-called induced distribution, instead of using Monte Carlo (MC) sampling from the original, unknown probability measure. We demonstrate on test problems that induced sampling is a competitive and often better choice compared with sampling from asymptotically optimal measures (such as the equilibrium measure) when we have incomplete information about the distribution. We demonstrate the capacity of the proposed induced sampling algorithm via sparse representation with limited data on test functions, and on a Kirchoff plating bending problem with random Young's modulus.

Citations (4)

Summary

We haven't generated a summary for this paper yet.