Gradient sensing limit of a cell when controlling the elongating direction (2405.04810v1)
Abstract: Eukaryotic cells perform chemotaxis by determining the direction of chemical gradients based on stochastic sensing of concentrations at the cell surface. To examine the efficiency of this process, previous studies have investigated the limit of estimation accuracy for gradients. However, these studies assume that the cell shape and gradient are constant, and do not consider how adaptive regulation of cell shape affects the estimation limit. Dynamics of cell shape during gradient sensing is biologically ubiquitous and can influence the estimation by altering the way the concentration is measured, and cells may strategically regulate their shape to improve estimation accuracy. To address this gap, we investigate the estimation limits in dynamic situations where cells change shape adaptively depending on the sensed signal. We approach this problem by analyzing the stationary solution of the Bayesian nonlinear filtering equation. By applying diffusion approximation to the ligand-receptor binding process and the Laplace method for the posterior expectation under a high signal-to-noise ratio regime, we obtain an analytical expression for the estimation limit. This expression indicates that estimation accuracy can be improved by elongating perpendicular to the estimated direction, which is also confirmed by numerical simulations. Our analysis provides a basis for clarifying the interplay between estimation and control in gradient sensing and sheds light on how cells optimize their shape to enhance chemotactic efficiency.
- C. A. Parent and P. N. Devreotes, Science 284, 765 (1999).
- M. Ueda and T. Shibata, Biophysical journal 93, 11 (2007).
- P. J. Van Haastert and M. Postma, Biophysical journal 93, 1787 (2007).
- R. G. Endres and N. S. Wingreen, Proceedings of the National Academy of Sciences 105, 15749 (2008).
- W.-J. Rappel and H. Levine, Physical review letters 100, 228101 (2008).
- M. Novak and B. M. Friedrich, New Journal of Physics 23, 043026 (2021).
- P. J. van Haastert, I. Keizer-Gunnink, and A. Kortholt, Molecular biology of the cell 28, 922 (2017).
- A. Baba, T. Hiraiwa, and T. Shibata, Physical Review E 86, 060901 (2012).
- T. Hiraiwa, A. Baba, and T. Shibata, The European Physical Journal E 36, 1 (2013).
- A. Bain and D. Crisan, Fundamentals of stochastic filtering, Vol. 3 (Springer, 2009).
- A. Kutschireiter, S. C. Surace, and J.-P. Pfister, Journal of Mathematical Psychology 94, 102307 (2020).
- T. J. Kobayashi, Physical review letters 104, 228104 (2010).
- T. Mora and I. Nemenman, Physical review letters 123, 198101 (2019).
- K. Nakamura and T. J. Kobayashi, Physical Review Letters 126, 128102 (2021).
- A. Auconi, M. Novak, and B. M. Friedrich, Europhysics Letters 138, 12001 (2022).
- M. Venugopal, R. M. Vasu, and D. Roy, IEEE Transactions on Automatic Control 61, 823 (2015).
- K. Kanazawa and D. Sornette, Physical Review Research 2, 033442 (2020).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.