Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spin-Hall effect in topological materials: Evaluating the proper spin current in systems with arbitrary degeneracies (2405.04581v1)

Published 7 May 2024 in cond-mat.mes-hall

Abstract: The spin-Hall effect underpins some of the most active topics in modern physics, including spin torques and the inverse spin-Hall effect, yet it lacks a proper theoretical description. This makes it difficult to differentiate the SHE from other mechanisms, as well as differentiate band structure and disorder contributions. Here, by exploiting recent analytical breakthroughs in the understanding of the intrinsic spin-Hall effect, we devise a density functional theory method for evaluating the conserved (proper) spin current in a generic system. Spin non-conservation makes the conventional spin current physically meaningless, while the conserved spin current has been challenging to evaluate since it involves the position operator between Bloch bands. The novel method we introduce here can handle band structures with arbitrary degeneracies and incorporates all matrix elements of the position operator, including the notoriously challenging diagonal elements, which are associated with Fermi surface, group velocity, and dipolar effects but often diverge if not treated correctly. We apply this method to the most important classes of spin-Hall materials: topological insulators, 2D quantum spin-Hall insulators, non-collinear antiferromagnets, and strongly spin-orbit coupled metals. We demonstrate that the torque dipole systematically suppresses contributions to the conventional spin current such that, the proper spin current is generally smaller in magnitude and often has a different sign. Remarkably, its energy-dependence is relatively flat and featureless, and its magnitude is comparable in all classes of materials studied. These findings will guide the experiment in characterizing charge-to-spin interconversion in spintronic and orbitronic devices. We also discuss briefly a potential generalisation of the method to calculate extrinsic spin currents generated by disorder scattering.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. K. Ando and E. Saitoh, Nature Communications 3, 629 (2012).
  2. A. Brataas, A. D. Kent, and H. Ohno, Nature Materials 11, 372 (2012).
  3. Y. Wang, R. Ramaswamy, and H. Yang, Journal of Physics D: Applied Physics 51, 273002 (2018).
  4. Q.-f. Sun and X. C. Xie, Phys. Rev. B 72, 245305 (2005).
  5. T.-W. Chen, C.-M. Huang, and G. Y. Guo, Phys. Rev. B 73, 235309 (2006).
  6. S. Murakami, N. Nagosa, and S.-C. Zhang, Phys. Rev. B 69, 235206 (2004).
  7. C. Xiao and Q. Niu, Phys. Rev. B 104, L241411 (2021).
  8. H. Liu, J. H. Cullen, and D. Culcer, Phys. Rev. B 108, 195434 (2023).
  9. J. H. Cullen and D. Culcer, Phys. Rev. B 108, 245418 (2023).
  10. R. B. Atencia and D. Culcer, arXiv preprint arXiv:2311.12108  (2023).
  11. H. Zhang, Z. Ma, and J.-F. Liu, Scientific Reports 4, 6464 (2014).
  12. P. Kapri, B. Dey, and T. K. Ghosh, Phys. Rev. B 103, 165401 (2021).
  13. P. Kleinert and V. Bryksin, physica status solidi c 3, 4322 (2006).
  14. E. I. Rashba, Phys. Rev. B 68, 241315 (2003).
  15. C. Gorini, R. Raimondi, and P. Schwab, Phys. Rev. Lett. 109, 246604 (2012).
  16. D. Monaco and L. Ulčakar, Phys. Rev. B 102, 125138 (2020).
  17. G. Tatara, Phys. Rev. B 98, 174422 (2018).
  18. A. Shitade and G. Tatara, Phys. Rev. B 105, L201202 (2022).
  19. W. Han, Y. Otani, and S. Maekawa, npj Quantum Materials 3, 27 (2018).
  20. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
  21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  22. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
  23. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  24. S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).
  25. B. E. Brown, Acta Crystallogr. 20, 268 (1966).
  26. E. Owen and E. Yates, Philos. Mag. 15, 472 (1933).
  27. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  28. S. M. Farzaneh and S. Rakheja, Phys. Rev. Mater. 4, 114202 (2020).
  29. S. Tomiyoshi and Y. Yamaguchi, Journal of the Physical Society of Japan 51, 2478 (1982).
  30. S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).
  31. J. H. Cullen, R. B. Atencia, and D. Culcer, Nanoscale 15, 8437 (2023).
  32. A. Sakai and H. Kohno, Physical Review B 89, 165307 (2014).
  33. M. Farokhnezhad, R. Asgari, and D. Culcer, Journal of Physics: Materials 6, 014002 (2022).
  34. M. Farokhnezhad, R. Asgari, and D. Culcer, arXiv preprint arXiv:2306.12557  (2023).
  35. G.-Y. Guo and T.-C. Wang, Physical Review B 96, 224415 (2017).
  36. L. Liu, R. Buhrman, and D. Ralph, arXiv preprint arXiv:1111.3702  (2011b).
  37. S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).
  38. S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
  39. L. K. Werake and H. Zhao, Nature Physics 6, 875 (2010).
  40. D. Culcer, A. Sekine, and A. H. MacDonald, Phys. Rev. B 96, 035106 (2017).
  41. R. B. Atencia, Q. Niu, and D. Culcer, Phys. Rev. Res. 4, 013001 (2022).
  42. N. Sinitsyn, Journal of Physics: Condensed Matter 20, 023201 (2007).
  43. N. Nagaosa, J. Sinova, and S. Onoda, Reviews of Modern Physics 82, 1539 (2010).
  44. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Physical review letters 93, 226602 (2004).
  45. H. Liu and D. Culcer, arXiv preprint arXiv:2308.14878  (2023).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.