Papers
Topics
Authors
Recent
2000 character limit reached

Transportability of Principal Causal Effects

Published 7 May 2024 in stat.ME | (2405.04419v2)

Abstract: Recent research in causal inference has made important progress in addressing challenges to the external validity of trial findings. Such methods weight trial participant data to more closely resemble the distribution of effect-modifying covariates in a well-defined target population. In the presence of participant non-adherence to study medication, these methods effectively transport an intention-to-treat effect that averages over heterogeneous compliance behaviors. In this paper, we develop a principal stratification framework to identify causal effects conditioning on both compliance behavior and membership in the target population. We also develop non-parametric efficiency theory for and construct efficient estimators of such "transported" principal causal effects and characterize their finite-sample performance in simulation experiments. While this work focuses on treatment non-adherence, the framework is applicable to a broad class of estimands that target effects in clinically-relevant, possibly latent subsets of a target population.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 24 likes about this paper.