Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selection on treatment in the target population of generalizabillity and transportability analyses (2209.08758v1)

Published 19 Sep 2022 in stat.ME

Abstract: Investigators are increasingly using novel methods for extending (generalizing or transporting) causal inferences from a trial to a target population. In many generalizability and transportability analyses, the trial and the observational data from the target population are separately sampled, following a non-nested trial design. In practical implementations of this design, non-randomized individuals from the target population are often identified by conditioning on the use of a particular treatment, while individuals who used other candidate treatments for the same indication or individuals who did not use any treatment are excluded. In this paper, we argue that conditioning on treatment in the target population changes the estimand of generalizability and transportability analyses and potentially introduces serious bias in the estimation of causal estimands in the target population or the subset of the target population using a specific treatment. Furthermore, we argue that the naive application of marginalization-based or weighting-based standardization methods does not produce estimates of any reasonable causal estimand. We use causal graphs and counterfactual arguments to characterize the identification problems induced by conditioning on treatment in the target population and illustrate the problems using simulated data. We conclude by considering the implications of our findings for applied work.

Summary

We haven't generated a summary for this paper yet.