Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the performativity of SDG classifications in large bibliometric databases (2405.03007v1)

Published 5 May 2024 in cs.DL, cs.AI, and cs.CL

Abstract: Large bibliometric databases, such as Web of Science, Scopus, and OpenAlex, facilitate bibliometric analyses, but are performative, affecting the visibility of scientific outputs and the impact measurement of participating entities. Recently, these databases have taken up the UN's Sustainable Development Goals (SDGs) in their respective classifications, which have been criticised for their diverging nature. This work proposes using the feature of LLMs to learn about the "data bias" injected by diverse SDG classifications into bibliometric data by exploring five SDGs. We build a LLM that is fine-tuned in parallel by the diverse SDG classifications inscribed into the databases' SDG classifications. Our results show high sensitivity in model architecture, classified publications, fine-tuning process, and natural language generation. The wide arbitrariness at different levels raises concerns about using LLM in research practice.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com