Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

U-duality in quantum M2-branes and gauged supergravities (2405.02775v1)

Published 5 May 2024 in hep-th

Abstract: In this paper, we study the relation of the M2-brane with fluxes and monodromy in $SL(2,\mathbb{Z})$, which has a quantum discrete supersymmetric spectrum with finite multiplicity, and type IIB gauged supergravities in nine dimensions. $SL(2,\mathbb{Z})$ is the group of isotopy classes of the area preserving diffeomorphisms. The global description of these M2-branes we are considering is formulated on twisted torus bundles, and they are classified in terms of $H2(\Sigma,\mathcal{Z}_{\mathcal{\rho}})$, or equivalently, by their coinvariants for a given monodromy subgroup. We find the 'gauge' symmetries between equivalent M2-branes, on torus bundles with monodromy, that leads to $\mathbb{R}$, $SO(2)$ or $SO(1,1)$, the symmetry groups of type IIB gauged supergravities in 9d. We obtain an explicit relation between the equivalent classes of M2-brane bundles and the mass parameters that classify the gaugings of type IIB supergravities in 9d. We also find that the symmetries, between inequivalent M2-branes on twisted torus bundles for a given monodromy, are related with $\mathbb{Z}$, $\mathcal{Z}3$, $\mathcal{Z}_5$, $\mathcal{Z}_9$ or $\mathcal{Z}{2n-7}$ for $n\geq 5$, the U-duality symmetry group, a subgroup of $SL(2,\mathbb{Z})$. In distinction, in the case without monodromy, related to type II maximal supergravity at low energies, its U-duality group corresponds to the full $SL(2,\mathbb{Z})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. (Non)Abelian gauged supergravities in nine-dimensions. JHEP, 10:061, 2002.
  2. Type IIB seven-brane solutions from nine-dimensional domain walls. Class. Quant. Grav., 19:4207–4226, 2002.
  3. An Sl(2,Z) multiplet of nine-dimensional type II supergravity theories. Nucl. Phys. B, 541:195–245, 1999.
  4. Supersymmetry of massive d=9 supergravity. Physics Letters B, 525:322–330, 2001.
  5. The general gaugings of maximal d=9 supergravity. JHEP, 10:068, 2011.
  6. C. M. Hull. Gauged D=9 supergravities and Scherk-Schwarz reduction. Class. Quant. Grav., 21(2):509–516, 2004.
  7. C. M. Hull. Massive string theories from M theory and F theory. JHEP, 11:027, 1998.
  8. H. Samtleben. Lectures on Gauged Supergravity and Flux Compactifications. Class. Quant. Grav., 25:214002, 2008.
  9. H. Nicolai and H. Samtleben. Maximal gauged supergravity in three-dimensions. Phys. Rev. Lett., 86:1686–1689, 2001.
  10. On Lagrangians and gaugings of maximal supergravities. Nucl. Phys. B, 655:93–126, 2003.
  11. Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems. Fortsch. Phys., 53:442–449, 2005.
  12. P. M. Cowdall. Novel domain wall and Minkowski vacua of D = 9 maximal SO(2) gauged supergravity. Nucl. Phys. B, 600:81, 2001.
  13. The supermembrane is unstable. Nuclear Physics B, 320(1):135 – 159, 1989.
  14. On the stability of compactified d = 11 supermembranes: Global aspects of the bosonic sector. Nuclear Physics B, 521(1):117 – 128, 1998.
  15. Discreteness of the spectrum of the compactified d=11 supermembrane with nontrivial winding. Nuclear Physics B, 671:343 – 358, 2003.
  16. The Supermembrane with Central Charges on a G2 Manifold. J. Phys. A, 42:325201, 2009.
  17. Spectral properties in supersymmetric matrix models. Nucl. Phys. B, 856:716–747, 2012.
  18. M2-branes on a constant flux background. Phys. Lett., B797:134924, 2019.
  19. Supersymmetric algebra of the massive supermembrane. Phys. Lett. B, 839:137754, 2023.
  20. Supermembrane origin of type II gauged supergravities in 9D. JHEP, 09:063, 2012.
  21. Classification of M2-brane 2-torus bundles, U-duality invariance and type II gauged supergravities. Phys. Rev. D, 100(2):026005, 2019.
  22. Type IIB parabolic (p, q)-strings from M2-branes with fluxes. JHEP, 03:143, 2023.
  23. Duality of type II 7 branes and 8 branes. Nucl. Phys. B, 470:113–135, 1996.
  24. Fibre bundles and generalized dimensional reductions. Classical and Quantum Gravity, 15(8):2239–2256, aug 1998.
  25. On generalized axion reductions. Phys. Lett. B, 428:297–302, 1998.
  26. J. H. Schwarz. An SL(2,Z) multiplet of type IIB superstrings. Phys. Lett. B, 360:13–18, 1995. [Erratum: Phys.Lett.B 364, 252 (1995)].
  27. Space-time supersymmetry, IIA / B duality and M theory. Phys. Lett., B466:144–152, 1999.
  28. How to Get Masses from Extra Dimensions. Nucl. Phys., B153:61–88, 1979. [,79(1979)].
  29. H. Nicolai and H. Samtleben. Compact and noncompact gauged maximal supergravities in three-dimensions. JHEP, 04:022, 2001.
  30. The Maximal D=4 supergravities. JHEP, 06:049, 2007.
  31. Unity of superstring dualities. Nucl. Phys., B438:109–137, 1995. [,236(1994)].
  32. Uncovering the symmetries on [p,q] seven-branes: Beyond the Kodaira classification. Adv. Theor. Math. Phys., 3:1785–1833, 1999.
  33. Uncovering infinite symmetries on [p, q] 7-branes: Kac-Moody algebras and beyond. Adv. Theor. Math. Phys., 3:1835–1891, 1999.
  34. Fluxes, twisted tori, monodromy and U⁢(1)𝑈1U(1)italic_U ( 1 ) supermembranes. JHEP, 09:097, 2020.
  35. Superspace geometry for supermembrane backgrounds. Nucl. Phys. B, 532:99–123, 1998.
  36. On the Quantum Mechanics of Supermembranes. Nucl. Phys., B305:545, 1988. [,73(1988)].
  37. Supermembranes with winding. Phys. Lett. B, 409:117–123, 1997.
  38. The Supermembrane with winding. Nucl. Phys. B Proc. Suppl., 62:405–411, 1998.
  39. I. Martin and A. Restuccia. On some stability properties of compactified D = 11 supermembranes. Lect. Notes Phys., 524:198, 1999. [,198(1998)].
  40. Stable solutions of the double compactified D = 11 supermembrane dual. Phys. Lett. B, 472:77–82, 2000.
  41. Classification of M2-brane 2-torus bundles, U-duality invariance and type II gauged supergravities. Phys. Rev., D100(2):026005, 2019.
  42. Spectrum of a noncommutative formulation of the D = 11 supermembrane with winding. Phys. Rev., D66:045023, 2002.
  43. P. J. Kahn. Symplectic torus bundles and group extensions. math/0405109 [math.SG], 2004.
  44. SL(2,Z) symmetries, Supermembranes and Symplectic Torus Bundles. JHEP, 09:068, 2011.
  45. Mass operator of the M2-brane on a background with constant three-form. arXiv:1905.08376 [hep-th], 2019.
  46. R. Sharifi. Notes on Groups and Galois Cohomology. UCLA, D47, 5453–5459, 1993.
  47. (In progress). 2024.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com