Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data Mining-Based Dynamical Anomaly Detection Method for Integrating with an Advance Metering System (2405.02574v1)

Published 4 May 2024 in cs.LG

Abstract: Building operations consume 30% of total power consumption and contribute 26% of global power-related emissions. Therefore, monitoring, and early detection of anomalies at the meter level are essential for residential and commercial buildings. This work investigates both supervised and unsupervised approaches and introduces a dynamic anomaly detection system. The system introduces a supervised Light Gradient Boosting machine and an unsupervised autoencoder with a dynamic threshold. This system is designed to provide real-time detection of anomalies at the meter level. The proposed dynamical system comes with a dynamic threshold based on the Mahalanobis distance and moving averages. This approach allows the system to adapt to changes in the data distribution over time. The effectiveness of the proposed system is evaluated using real-life power consumption data collected from smart metering systems. This empirical testing ensures that the system's performance is validated under real-world conditions. By detecting unusual data movements and providing early warnings, the proposed system contributes significantly to visual analytics and decision science. Early detection of anomalies enables timely troubleshooting, preventing financial losses and potential disasters such as fire incidents.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets