Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Models in Speech Recognition: Measuring GPU Energy Consumption, Impact of Noise and Model Quantization for Edge Deployment (2405.01004v1)

Published 2 May 2024 in cs.SD, cs.AI, cs.CV, cs.HC, cs.LG, and eess.AS

Abstract: Recent transformer-based ASR models have achieved word-error rates (WER) below 4%, surpassing human annotator accuracy, yet they demand extensive server resources, contributing to significant carbon footprints. The traditional server-based architecture of ASR also presents privacy concerns, alongside reliability and latency issues due to network dependencies. In contrast, on-device (edge) ASR enhances privacy, boosts performance, and promotes sustainability by effectively balancing energy use and accuracy for specific applications. This study examines the effects of quantization, memory demands, and energy consumption on the performance of various ASR model inference on the NVIDIA Jetson Orin Nano. By analyzing WER and transcription speed across models using FP32, FP16, and INT8 quantization on clean and noisy datasets, we highlight the crucial trade-offs between accuracy, speeds, quantization, energy efficiency, and memory needs. We found that changing precision from fp32 to fp16 halves the energy consumption for audio transcription across different models, with minimal performance degradation. A larger model size and number of parameters neither guarantees better resilience to noise, nor predicts the energy consumption for a given transcription load. These, along with several other findings offer novel insights for optimizing ASR systems within energy- and memory-limited environments, crucial for the development of efficient on-device ASR solutions. The code and input data needed to reproduce the results in this article are open sourced are available on [https://github.com/zzadiues3338/ASR-energy-jetson].

Summary

We haven't generated a summary for this paper yet.