Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People (2405.00682v1)

Published 22 Feb 2024 in eess.SP, cs.AI, and cs.CV

Abstract: Synthetic longitudinal brain MRI simulates brain aging and would enable more efficient research on neurodevelopmental and neurodegenerative conditions. Synthetically generated, age-adjusted brain images could serve as valuable alternatives to costly longitudinal imaging acquisitions, serve as internal controls for studies looking at the effects of environmental or therapeutic modifiers on brain development, and allow data augmentation for diverse populations. In this paper, we present a diffusion-based approach called SynthBrainGrow for synthetic brain aging with a two-year step. To validate the feasibility of using synthetically-generated data on downstream tasks, we compared structural volumetrics of two-year-aged brains against synthetically-aged brain MRI. Results show that SynthBrainGrow can accurately capture substructure volumetrics and simulate structural changes such as ventricle enlargement and cortical thinning. Our approach provides a novel way to generate longitudinal brain datasets from cross-sectional data to enable augmented training and benchmarking of computational tools for analyzing lifespan trajectories. This work signifies an important advance in generative modeling to synthesize realistic longitudinal data with limited lifelong MRI scans. The code is available at XXX.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com