Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lane Segmentation Refinement with Diffusion Models (2405.00620v1)

Published 1 May 2024 in cs.CV

Abstract: The lane graph is a key component for building high-definition (HD) maps and crucial for downstream tasks such as autonomous driving or navigation planning. Previously, He et al. (2022) explored the extraction of the lane-level graph from aerial imagery utilizing a segmentation based approach. However, segmentation networks struggle to achieve perfect segmentation masks resulting in inaccurate lane graph extraction. We explore additional enhancements to refine this segmentation-based approach and extend it with a diffusion probabilistic model (DPM) component. This combination further improves the GEO F1 and TOPO F1 scores, which are crucial indicators of the quality of a lane graph, in the undirected graph in non-intersection areas. We conduct experiments on a publicly available dataset, demonstrating that our method outperforms the previous approach, particularly in enhancing the connectivity of such a graph, as measured by the TOPO F1 score. Moreover, we perform ablation studies on the individual components of our method to understand their contribution and evaluate their effectiveness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.