Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

CultiVerse: Towards Cross-Cultural Understanding for Paintings with Large Language Model (2405.00435v1)

Published 1 May 2024 in cs.HC

Abstract: The integration of new technology with cultural studies enhances our understanding of cultural heritage but often struggles to connect with diverse audiences. It is challenging to align personal interpretations with the intended meanings across different cultures. Our study investigates the important factors in appreciating art from a cross-cultural perspective. We explore the application of LLMs to bridge the cultural and language barriers in understanding Traditional Chinese Paintings (TCPs). We present CultiVerse, a visual analytics system that utilizes LLMs within a mixed-initiative framework, enhancing interpretative appreciation of TCP in a cross-cultural dialogue. CultiVerse addresses the challenge of translating the nuanced symbolism in art, which involves interpreting complex cultural contexts, aligning cross-cultural symbols, and validating cultural acceptance. CultiVerse integrates an interactive interface with the analytical capability of LLMs to explore a curated TCP dataset, facilitating the analysis of multifaceted symbolic meanings and the exploration of cross-cultural serendipitous discoveries. Empirical evaluations affirm that CultiVerse significantly improves cross-cultural understanding, offering deeper insights and engaging art appreciation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. Apricot Blossom and Peacock. https://digitalarchive.npm.gov.tw/Painting/Content?pid=3596&Dept=P.
  2. New models and developer products announced at DevDay. https://openai.com/blog/new-models-and-developer-products-announced-at-devday. [Accessed Dec 1, 2023].
  3. The Chinese Iconography Thesaurus Database. https://chineseiconography.org. [Accessed Sep 1, 2023].
  4. The GitHub URL for the CultiVerse project. https://github.com/cultiverse/CultiVerse.
  5. The Three Friends of Winter. https://digitalarchive.npm.gov.tw/Painting/Content?pid=5872&Dept=P.
  6. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. doi: 10 . 48550/arXiv . 2303 . 08774
  7. Towards measuring and modeling" culture" in llms: A survey. arXiv preprint arXiv:2403.15412, 2024. doi: 10 . 48550/arXiv . 2403 . 15412
  8. J. J. Amigo Extremera. Fitting culture into translation process research. Translation & Interpreting: The International Journal of Translation and Interpreting Research, 7(1):26–46, 2015. doi: 10 . 12807/ti . 106201 . 2015 . a05
  9. S. Bassnett. Culture and translation. A companion to translation studies, pp. 13–23, 2007. doi: 10 . 21832/9781853599583-003
  10. G. Beech. Misunderstanding misunderstanding: Exploring the depth of hindrance to cross-cultural communications. International Bulletin of Mission Research, 47:274–285, 2022. doi: 10 . 1177/23969393221105220
  11. Visualization and the digital humanities:. IEEE Computer Graphics and Applications, 38(6):26–38, 2018. doi: 10 . 1109/MCG . 2018 . 2878900
  12. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. doi: 10 . 48550/arXiv . 2005 . 14165
  13. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023. doi: 10 . 48550/arXiv . 2303 . 12712
  14. A multi-modal visual analytic approach for attributing and authenticating ancient chinese paintings. Journal of Computer-Aided Design and Computer Graphics, p. to appear, 2023. doi: 10 . 3724/SP . J . 1089 . 2023-00350
  15. W. Eberhard. Chinese Cultural Symbol Dictionary. Hunan Literature and Art Publishing House, 1990.
  16. ipoet: Interactive painting poetry creation with visual multimodal analysis. Journal of Visualization, 25(3):671–685, June 2022. doi: 10 . 1007/s12650-021-00780-0
  17. Promptmagician: Interactive prompt engineering for text-to-image creation. IEEE Transactions on Visualization and Computer Graphics, 30(1):295–305, 2024. doi: 10 . 1109/TVCG . 2023 . 3327168
  18. Xnli: Explaining and diagnosing nli-based visual data analysis. IEEE Transactions on Visualization and Computer Graphics, pp. 1–14, 2023. doi: 10 . 1109/TVCG . 2023 . 3240003
  19. W. C. Fong. How to understand chinese painting. Proceedings of the American Philosophical Society, 115(4):282–292, 1971.
  20. NORMSAGE: Multi-lingual multi-cultural norm discovery from conversations on-the-fly. In Proc. EMNLP, EMNLP’23, pp. 15217–15230, Dec. 2023. doi: 10 . 18653/v1/2023 . emnlp-main . 941
  21. Liberroad: Probing into the journey of chinese classics through visual analytics. IEEE Transactions on Visualization and Computer Graphics, 30(1):529–539, 2024. doi: 10 . 1109/TVCG . 2023 . 3326944
  22. R. J. Hallman. The art object in hindu aesthetics. The Journal of Aesthetics and Art Criticism, 12(4):493–498, 1954. doi: 10 . 2307/426909
  23. A. Harris. Archival objects and the circulation of culture. Circulating Cultures, 2014. doi: 10 . 22459/CC . 12 . 2014 . 01
  24. G. Hofstede. Dimensionalizing cultures: The hofstede model in context. Online readings in psychology and culture, 2(1):8, 2011. doi: 10 . 9707/2307-0919 . 1014
  25. J. House. Misunderstanding in intercultural communication. Toegepaste Taalwetenschap in Artikelen, 57:11–17, 1997. doi: 10 . 1075/TTWIA . 57 . 02HOU
  26. J. Huang and D. Yang. Culturally aware natural language inference. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 7591–7609, 2023. doi: 10 . 18653/v1/2023 . findings-emnlp . 509
  27. Prismatic: Interactive multi-view cluster analysis of concept stocks. arXiv preprint arXiv:2304.05011, 2024. doi: 10 . 48550/arXiv . 2402 . 08978
  28. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020. doi: 10 . 48550/arXiv . 2001 . 08361
  29. M. J. Letts. Cross-cultural issues in art: Frames for understanding. Studies in Art Education, 56(2):187–190, 2015. doi: 10 . 1080/00393541 . 2015 . 11518961
  30. S. Liu et al. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499, 2023. doi: 10 . 48550/arXiv . 2303 . 05499
  31. Y. Liu. Cross-culturalism in painting: visualization via meanders. Journal of Visual Art Practice, 8:205–214, 2009. doi: 10 . 1386/jvap . 8 . 3 . 205/1
  32. Towards equitable representation in text-to-image synthesis models with the cross-cultural understanding benchmark (ccub) dataset. arXiv preprint arXiv:2301.12073, 2023. doi: 10 . 48550/arXiv . 2301 . 12073
  33. E. Martinez. Listen to that painting!: An intercultural experiment based on cross-sensory coupling. The International Journal of New Media, Technology and the Arts, 7:33–47, 2013. doi: 10 . 18848/2326-9987/CGP/V07I03/36307
  34. N. P. Museum. National Palace Museum Open Data. https://theme.npm.edu.tw/opendata/. [Accessed Sep 1, 2023].
  35. Having beer after prayer? measuring cultural bias in large language models. arXiv preprint arXiv:2305.14456, 2023. doi: 10 . 48550/arXiv . 2305 . 14456
  36. The development and evaluation of a survey to measure user engagement. Journal of the American Society for Information Science and Technology, 61(1):50–69, 2010. doi: 10 . 1002/asi . 21229
  37. Y. Pan and W. Yu. Discussion on aesthetic design in chinese painting based on cross-cultural design. In Proc. HCII, Poster HCII 2020, pp. 308–316, 2020. doi: 10 . 1007/978-3-030-50732-9_41
  38. A cross-cultural analysis of social norms in bollywood and hollywood movies. arXiv preprint arXiv:2402.11333, 2024. doi: 10 . 48550/arXiv . 2402 . 11333
  39. A. Ramezani and Y. Xu. Knowledge of cultural moral norms in large language models. arXiv preprint arXiv:2306.01857, 2023. doi: 10 . 18653/v1/2023 . acl-long . 26
  40. I. I. T. Rohmah. Cross Cultural Understanding (The Road To Travel The World). Perkumpulan Rumah Cemerlang Indonesia, 2021.
  41. K. Roth. Material culture and intercultural communication. International Journal of Intercultural Relations, 25:563–580, 2001. doi: 10 . 1016/S0147-1767(01)00023-2
  42. Y. Ruan. Exploring the symbolism and cultural importance of dunhuang lotus motifs. International Journal of Education and Humanities, 10(3):22–24, 2023. doi: 10 . 54097/ijeh . v10i3 . 11785
  43. Commemorating geert hofstede, a pioneer in the study of culture and institutions. Journal of Institutional Economics, 18(1):15–27, 2022.
  44. F. G. Sharipboevna and T. Kamola. Improving cross-cultural communication. ResearchJet Journal of Analysis and Inventions, 2:359–363, 2021. doi: 10 . 17605/OSF . IO/9KWDM
  45. Sociocultural norm similarities and differences via situational alignment and explainable textual entailment. In Proc. EMNLP, 2023. doi: 10 . 48550/arXiv . 2305 . 14492
  46. H. Sun. Creation and interpretation: Study on the symbolism of traditional chinese painting. In Proc. ICASSEE, vol. 1 of ICASSEE’21, pp. 240–246. Amsterdam University Press, 2021. doi: 10 . 5117/9789048557240/ICASSEE . 2021 . 035
  47. J. Sun and A. Ab Aziz. Exploring the redesign value of chinese traditional auspicious patterns in the context of modern design. EDUCATUM Journal of Social Sciences, 9(1):12–26, 2023. doi: 10 . 37134/ejoss . vol9 . 1 . 2 . 2023
  48. Pcolorizor: Re-coloring ancient chinese paintings with ideorealm-congruent poems. In Proc. UIST, UIST ’23, 2023. doi: 10 . 1145/3586183 . 3606814
  49. T. Taracenko and L. Kulykova. The ways of overcoming misunderstanding in cross-cultural communication. Scientific Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University. Series: Pedagogy, 2:40–44, 2018. doi: 10 . 33842/2219-5203-2018-2-21-40-44
  50. J. H. Taylor. Journey through the afterlife: Ancient Egyptian Book of the Dead. Harvard University Press, 2010.
  51. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. doi: 10 . 48550/arXiv . 2307 . 09288
  52. Transformers learn in-context by gradient descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023. doi: 10 . 48550/arXiv . 2212 . 07677
  53. Interactive visual exploration of longitudinal historical career mobility data. IEEE Transactions on Visualization and Computer Graphics, 28(10):3441–3455, 2021. doi: 10 . 1109/TVCG . 2021 . 3067200
  54. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682, 2022. doi: 10 . 48550/arXiv . 2206 . 07682
  55. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022. doi: 10 . 48550/arXiv . 2201 . 11903
  56. C. A. S. Williams. Outlines of Chinese symbolism and art motives: an alphabetical compendium of antique legends and beliefs, as reflected in the manners and customs of the Chinese. Courier Corporation, 1976.
  57. C. A. S. Williams. Chinese symbolism and art motifs fourth revised edition: A comprehensive handbook on symbolism in Chinese art through the ages. Tuttle Publishing, 2012.
  58. Ai for social science and social science of ai: A survey. Information Processing & Management, 61(3):103665, 2024. doi: 10 . 1016/j . ipm . 2024 . 103665
  59. Explaining with examples lessons learned from crowdsourced introductory description of information visualizations. IEEE Transactions on Visualization and Computer Graphics, 29(3):1638–1650, 2023. doi: 10 . 1109/TVCG . 2021 . 3128157
  60. Puzzlefixer: A visual reassembly system for immersive fragments restoration. IEEE Transactions on Visualization and Computer Graphics, 29(1):429–439, 2023. doi: 10 . 1109/TVCG . 2022 . 3209388
  61. L. Yuan. Cultural differences of chinese loong and western dragon. Studies in Literature and Language, 10(3):40, 2015.
  62. Instruction tuning for large language models: A survey. arXiv preprint arXiv:2308.10792, 2023. doi: 10 . 48550/arXiv . 2308 . 10792
  63. Scrolltimes: Tracing the provenance of paintings as a window into history. IEEE Transactions on Visualization and Computer Graphics, pp. 1–11, 2024. doi: 10 . 1109/TVCG . 2024 . 3388523
  64. Cohortva: A visual analytic system for interactive exploration of cohorts based on historical data. IEEE Transactions on Visualization and Computer Graphics, 29(1):756–766, 2023. doi: 10 . 1109/TVCG . 2022 . 3209483
  65. Visual storytelling of song ci and the poets in the social–cultural context of song dynasty. Visual Informatics, 5(4):34–40, 2021. doi: 10 . 1016/j . visinf . 2021 . 12 . 002
  66. Visual reasoning for uncertainty in spatio-temporal events of historical figures. IEEE Transactions on Visualization and Computer Graphics, 29(6):3009–3023, 2023. doi: 10 . 1109/TVCG . 2022 . 3146508
  67. Computational approaches for traditional chinese painting: From the "six principles of painting" perspective. Journal of Computer Science and Technology, 2024. To appear. doi: 10 . 48550/arXiv . 2307 . 14227
  68. Siren’s song in the ai ocean: a survey on hallucination in large language models. arXiv preprint arXiv:2309.01219, 2023. doi: 10 . 48550/arXiv . 2309 . 01219
  69. Enhancing the appreciation of traditional chinese painting using interactive technology. Multimodal Technologies and Interaction, 2(2):2414–4088, 2018. doi: 10 . 3390/mti2020016
  70. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023. doi: 10 . 48550/arXiv . 2303 . 18223
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube