Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensorized Soft Skin for Dexterous Robotic Hands (2404.19448v1)

Published 30 Apr 2024 in cs.RO and cs.AR

Abstract: Conventional industrial robots often use two-fingered grippers or suction cups to manipulate objects or interact with the world. Because of their simplified design, they are unable to reproduce the dexterity of human hands when manipulating a wide range of objects. While the control of humanoid hands evolved greatly, hardware platforms still lack capabilities, particularly in tactile sensing and providing soft contact surfaces. In this work, we present a method that equips the skeleton of a tendon-driven humanoid hand with a soft and sensorized tactile skin. Multi-material 3D printing allows us to iteratively approach a cast skin design which preserves the robot's dexterity in terms of range of motion and speed. We demonstrate that a soft skin enables firmer grasps and piezoresistive sensor integration enhances the hand's tactile sensing capabilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. Cockburn and S. Brewster, “Multimodal feedback for the acquisition of small targets,” Ergonomics, vol. 48, no. 9, pp. 1129–1150, Jul. 2005, publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00140130500197260. [Online]. Available: https://doi.org/10.1080/00140130500197260
  2. A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam et al., “Dextreme: Transfer of agile in-hand manipulation from simulation to reality,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5977–5984.
  3. Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating without seeing: Towards in-hand dexterity through touch,” arXiv preprint arXiv:2303.10880, 2023.
  4. Z. Samadikhoshkho, K. Zareinia, and F. Janabi-Sharifi, “A Brief Review on Robotic Grippers Classifications,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), May 2019, pp. 1–4, iSSN: 2576-7046.
  5. A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science, vol. 364, no. 6446, p. eaat8414, Jun. 2019, publisher: American Association for the Advancement of Science. [Online]. Available: https://www.science.org/doi/full/10.1126/science.aat8414
  6. J. K. Salisbury and J. J. Craig, “Articulated hands: Force control and kinematic issues,” The International journal of Robotics research, vol. 1, no. 1, pp. 4–17, 1982.
  7. H. Liu, J. Butterfass, S. Knoch, P. Meusel, and G. Hirzinger, “A new control strategy for dlr’s multisensory articulated hand,” IEEE Control Systems Magazine, vol. 19, no. 2, pp. 47–54, 1999.
  8. J. S. Dai, D. Wang, and L. Cui, “Orientation and workspace analysis of the multifingered metamorphic hand—metahand,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 942–947, 2009.
  9. Y. Toshimitsu, B. Forrai, B. G. Cangan, U. Steger, M. Knecht, S. Weirich, and R. K. Katzschmann, “Getting the Ball Rolling: Learning a Dexterous Policy for a Biomimetic Tendon-Driven Hand with Rolling Contact Joints,” Aug. 2023, publication Title: arXiv e-prints ADS Bibcode: 2023arXiv230802453T. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2023arXiv230802453T
  10. S. Kadalagere Sampath, N. Wang, H. Wu, and C. Yang, “Review on human-like robot manipulation using dexterous hands,” Cognitive Computation and Systems, vol. 5, no. 1, pp. 14–29, 2023, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/ccs2.12073. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1049/ccs2.12073
  11. A. Mohammadi, J. Lavranos, H. Zhou, R. Mutlu, G. Alici, Y. Tan, P. Choong, and D. Oetomo, “A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities,” PLOS ONE, vol. 15, no. 5, p. e0232766, May 2020. [Online]. Available: https://dx.plos.org/10.1371/journal.pone.0232766
  12. M. Tavakoli, A. Sayuk, J. Lourenço, and P. Neto, “Anthropomorphic finger for grasping applications: 3D printed endoskeleton in a soft skin,” The International Journal of Advanced Manufacturing Technology, vol. 91, no. 5-8, pp. 2607–2620, Jul. 2017. [Online]. Available: http://link.springer.com/10.1007/s00170-016-9971-8
  13. Z. Zhang, W. Fan, G. Chen, J. Luo, Q. Lu, and H. Wang, “A 3D Printable Origami Vacuum Pneumatic Artificial Muscle with Fast and Powerful Motion,” in 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), Apr. 2021, pp. 551–554.
  14. R. Tao, L. Ji, Y. Li, Z. Wan, W. Hu, W. Wu, B. Liao, L. Ma, and D. Fang, “4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves,” Composites Part B: Engineering, vol. 201, p. 108344, Nov. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S135983682033393X
  15. S. Walker, O. Yirmibeşoğlu, U. Daalkhaijav, and Y. Mengüç, “Additive manufacturing of soft robots,” in Robotic Systems and Autonomous Platforms.   Elsevier, 2019, pp. 335–359. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/B9780081022603000147
  16. A. Bhat, J. W. Ambrose, and R. C.-H. Yeow, “Composite Soft Pneumatic Actuators Using 3D Printed Skins,” IEEE Robotics and Automation Letters, vol. 8, no. 4, pp. 2086–2093, Apr. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10049113/
  17. A. S. Dalaq and M. F. Daqaq, “Experimentally-validated computational modeling and characterization of the quasi-static behavior of functional 3D-printed origami-inspired springs,” Materials & Design, vol. 216, p. 110541, Apr. 2022. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0264127522001629
  18. C. Liu, P. Maiolino, and Z. You, “A 3D-Printable Robotic Gripper Based on Thick Panel Origami,” Frontiers in Robotics and AI, vol. 8, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frobt.2021.730227
  19. B. Chen, Z. Shao, Z. Xie, J. Liu, F. Pan, L. He, L. Zhang, Y. Zhang, X. Ling, F. Peng, W. Yun, and L. Wen, “Soft Origami Gripper with Variable Effective Length,” Advanced Intelligent Systems, vol. 3, no. 10, p. 2000251, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000251
  20. J. Hernandez, M. S. H. Sunny, J. Sanjuan, I. Rulik, M. I. I. Zarif, S. I. Ahamed, H. U. Ahmed, and M. H. Rahman, “Current Designs of Robotic Arm Grippers: A Comprehensive Systematic Review,” Robotics, vol. 12, no. 1, p. 5, Feb. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2218-6581/12/1/5
  21. S. Walker, O. D. Yirmibeşoğlu, U. Daalkhaijav, and Y. Mengüç, “14 - Additive manufacturing of soft robots,” in Robotic Systems and Autonomous Platforms, ser. Woodhead Publishing in Materials, S. M. Walsh and M. S. Strano, Eds.   Woodhead Publishing, Jan. 2019, pp. 335–359. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780081022603000147
  22. E. P. Gardner and C. I. Palmer, “Simulation of motion on the skin. III. Mechanisms used by rapidly adapting cutaneous mechanoreceptors in the primate hand for spatiotemporal resolution and two-point discrimination,” Journal of Neurophysiology, vol. 63, no. 4, pp. 841–859, Apr. 1990, publisher: American Physiological Society. [Online]. Available: https://journals.physiology.org/doi/abs/10.1152/jn.1990.63.4.841
  23. A. B. Vallbo and R. S. Johansson, “Properties of cutaneous mechanoreceptors in the human hand related to touch sensation,” Human Neurobiology, vol. 3, no. 1, pp. 3–14, 1984.
  24. Z. Cui, W. Wang, H. Xia, C. Wang, J. Tu, S. Ji, J. M. R. Tan, Z. Liu, F. Zhang, W. Li, Z. Lv, Z. Li, W. Guo, N. Y. Koh, K. B. Ng, X. Feng, Y. Zheng, and X. Chen, “Freestanding and Scalable Force-Softness Bimodal Sensor Arrays for Haptic Body-Feature Identification,” Advanced Materials, vol. 34, no. 47, p. 2207016, 2022, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202207016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202207016
  25. B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, “Haptic identification of objects using a modular soft robotic gripper,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2015, pp. 1698–1705.
  26. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  27. E. Roels, S. Terryn, J. Brancart, R. Verhelle, G. Van Assche, and B. Vanderborght, “Additive Manufacturing for Self-Healing Soft Robots,” Soft Robotics, vol. 7, no. 6, pp. 711–723, Dec. 2020. [Online]. Available: https://www.liebertpub.com/doi/10.1089/soro.2019.0081
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jana Egli (1 paper)
  2. Benedek Forrai (5 papers)
  3. Thomas Buchner (6 papers)
  4. Jiangtao Su (39 papers)
  5. Xiaodong Chen (31 papers)
  6. Robert K. Katzschmann (43 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com