Papers
Topics
Authors
Recent
2000 character limit reached

On some relationships between the center and the derived subalgebra in Poisson (2-3)-algebras (2404.17741v1)

Published 27 Apr 2024 in math.RA

Abstract: One of the classic results of group theory is the so-called Schur theorem. It states that if the central factor-group $G/\zeta(G)$ of a group $G$ is finite, then its derived subgroup $[G,G]$ is also finite. This result has numerous generalizations and modifications in group theory. At the same time, similar investigations were conducted in other algebraic structures, namely in modules, linear groups, topological groups, $n$-groups, associative algebras, Lie algebras, Lie $n$-algebras, Lie rings, Leibniz algebras. In 2021, L.A. Kurdachenko, O.O. Pypka and I.Ya. Subbotin proved an analogue of Schur theorem for Poisson algebras: if the center of the Poisson algebra $P$ has finite codimension, then $P$ includes an ideal $K$ of finite dimension such that $P/K$ is abelian. In this paper, we continue similar studies for another algebraic structure. An analogue of Schur theorem for Poisson (2-3)-algebras is proved.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.