Papers
Topics
Authors
Recent
2000 character limit reached

A Poisson basis theorem for symmetric algebras of infinite-dimensional Lie algebras

Published 6 Aug 2020 in math.RA and math.AC | (2008.02845v3)

Abstract: We consider when the symmetric algebra of an infinite-dimensional Lie algebra, equipped with the natural Poisson bracket, satisfies the ascending chain condition (ACC) on Poisson ideals. We define a combinatorial condition on a graded Lie algebra which we call Dicksonian because it is related to Dickson's lemma on finite subsets of $\mathbb Nk$. Our main result is: Theorem. If $\mathfrak g$ is a Dicksonian graded Lie algebra over a field of characteristic zero, then the symmetric algebra $S(\mathfrak g)$ satisfies the ACC on radical Poisson ideals. As an application, we establish this ACC for the symmetric algebra of any graded simple Lie algebra of polynomial growth over an algebraically closed field of characteristic zero, and for the symmetric algebra of the Virasoro algebra. We also derive some consequences connected to the Poisson primitive spectrum of finitely Poisson-generated algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.