Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MegaParticles: Range-based 6-DoF Monte Carlo Localization with GPU-Accelerated Stein Particle Filter (2404.16370v1)

Published 25 Apr 2024 in cs.RO

Abstract: This paper presents a 6-DoF range-based Monte Carlo localization method with a GPU-accelerated Stein particle filter. To update a massive amount of particles, we propose a Gauss-Newton-based Stein variational gradient descent (SVGD) with iterative neighbor particle search. This method uses SVGD to collectively update particle states with gradient and neighborhood information, which provides efficient particle sampling. For an efficient neighbor particle search, it uses locality sensitive hashing and iteratively updates the neighbor list of each particle over time. The neighbor list is then used to propagate the posterior probabilities of particles over the neighbor particle graph. The proposed method is capable of evaluating one million particles in real-time on a single GPU and enables robust pose initialization and re-localization without an initial pose estimate. In experiments, the proposed method showed an extreme robustness to complete sensor occlusion (i.e., kidnapping), and enabled pinpoint sensor localization without any prior information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Globally consistent and tightly coupled 3d LiDAR inertial mapping,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2022.
  2. W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast direct LiDAR-inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2053–2073, Aug. 2022.
  3. D. Fox, “Adapting the sample size in particle filters through KLD-sampling,” The International Journal of Robotics Research, vol. 22, no. 12, pp. 985–1003, Dec. 2003.
  4. G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based SLAM with rao-blackwellized particle filters by adaptive proposals and selective resampling,” in IEEE International Conference on Robotics and Automation.   IEEE, 2005.
  5. H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley, and C. Stachniss, “Ir-mcl: Implicit representation-based online global localization,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1627–1634, Mar. 2023.
  6. X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox, “PoseRBPF: A rao–blackwellized particle filter for 6-d object pose tracking,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1328–1342, Oct. 2021.
  7. F. A. Maken, F. Ramos, and L. Ott, “Stein particle filter for nonlinear, non-gaussian state estimation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5421–5428, Apr. 2022.
  8. Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian inference algorithm,” in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.   Curran Associates, Inc., 2016.
  9. D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed iterative closest point algorithm,” in Object recognition supported by user interaction for service robots.   IEEE, 2002, pp. 545–548.
  10. M. Magnusson, “The three-dimensional normal-distributions transform: an efficient representation for registration, surface analysis, and loop detection,” Ph.D. dissertation, Örebro universitet, 2009.
  11. G. P. C. Junior, A. M. C. Rezende, V. R. F. Miranda, R. Fernandes, H. Azpurua, A. A. Neto, G. Pessin, and G. M. Freitas, “EKF-LOAM: An adaptive fusion of LiDAR SLAM with wheel odometry and inertial data for confined spaces with few geometric features,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1458–1471, July 2022.
  12. J. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “Normal distributions transform monte-carlo localization (NDT-MCL),” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, Nov. 2013.
  13. F. J. Perez-Grau, F. Caballero, A. Viguria, and A. Ollero, “Multi-sensor three-dimensional monte carlo localization for long-term aerial robot navigation,” International Journal of Advanced Robotic Systems, vol. 14, no. 5, Sept. 2017.
  14. N. Akai, T. Hirayama, and H. Murase, “3d monte carlo localization with efficient distance field representation for automated driving in dynamic environments,” in IEEE Intelligent Vehicles Symposium.   IEEE, Oct. 2020.
  15. D. Maggio, M. Abate, J. Shi, C. Mario, and L. Carlone, “Loc-nerf: Monte carlo localization using neural radiance fields,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2023.
  16. H. Sun, X. Liu, Q. Deng, W. Jiang, S. Luo, and Y. Ha, “Efficient FPGA implementation of k-nearest-neighbor search algorithm for 3d LIDAR localization and mapping in smart vehicles,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 9, pp. 1644–1648, Sept. 2020.
  17. K. Stepanas, J. Williams, E. Hernandez, F. Ruetz, and T. Hines, “OHM: GPU based occupancy map generation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 078–11 085, Oct. 2022.
  18. C. Peng and D. Weikersdorfer, “Map as the hidden sensor: Fast odometry-based global localization,” in IEEE International Conference on Robotics and Automation.   IEEE, May 2020.
  19. A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics: science and systems, vol. 2, no. 4.   Seattle, WA, 2009, p. 435.
  20. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based on p-stable distributions,” in Proceedings of the twentieth annual symposium on Computational geometry.   ACM, June 2004.
  21. M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H. Gross, “Optimized spatial hashing for collision detection of deformable objects.” in Vmv, vol. 3, 2003, pp. 47–54.
  22. M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.
  23. K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional LIDAR-based system for long-term and wide-area people behavior measurement,” International Journal of Advanced Robotic Systems, vol. 16, no. 2, Mar. 2019.
  24. Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, Oct. 2018, pp. 7244–7251.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: