Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stein particle filtering (2106.10568v1)

Published 19 Jun 2021 in cs.CE

Abstract: We present a new particle filtering algorithm for nonlinear systems in the discrete-time setting. Our algorithm is based on the Stein variational gradient descent (SVGD) framework, which is a general approach to sample from a target distribution. We merge the standard two-step paradigm in particle filtering into one step so that SVGD can be used. A distinguishing feature of the proposed algorithm is that, unlike most particle filtering methods, all the particles at any time step are equally weighted and thus no update on the weights is needed. We further extended our algorithm to allow for updating previous particles within a sliding window. This strategy may improve the reliability of the algorithm with respect to unexpected disturbance in the dynamics or outlier-measurements. The efficacy of the proposed algorithms is illustrated through several numerical examples in comparison with a standard particle filtering method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.