Non-saturation of Bootstrap Bounds by Hyperbolic Orbifolds (2404.14479v1)
Abstract: In recent years the conformal bootstrap has produced surprisingly tight bounds on many non-perturbative CFTs. It is an open question whether such bounds are indeed saturated by these CFTs. A toy version of this question appears in a recent application of the conformal bootstrap to hyperbolic orbifolds, where one finds bounds on Laplace eigenvalues that are exceptionally close to saturation by explicit orbifolds. In some instances, the bounds agree with the actual values to 11 significant digits. In this work we show, under reasonable assumptions about the convergence of numerics, that these bounds are not in fact saturated. In doing so, we find formulas for the OPE coefficients of hyperbolic orbifolds, using links between them and the Rankin-Cohen brackets of modular forms.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.