Automorphic Spectra and the Conformal Bootstrap (2111.12716v3)
Abstract: We describe a new method for constraining Laplacian spectra of hyperbolic surfaces and 2-orbifolds. The main ingredient is consistency of the spectral decomposition of integrals of products of four automorphic forms. Using a combination of representation theory of $\mathrm{PSL}_2(\mathbb{R})$ and semi-definite programming, the method yields rigorous upper bounds on the Laplacian spectral gap. In several examples, the bound is nearly sharp. For instance, our bound on all genus-2 surfaces is $\lambda_1\leq 3.8388976481$, while the Bolza surface has $\lambda_1\approx 3.838887258$. The bounds also allow us to determine the set of spectral gaps attained by all hyperbolic 2-orbifolds. Our methods can be generalized to higher-dimensional hyperbolic manifolds and to yield stronger bounds in the two-dimensional case. The ideas were closely inspired by modern conformal bootstrap.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.