Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do "English" Named Entity Recognizers Work Well on Global Englishes? (2404.13465v1)

Published 20 Apr 2024 in cs.CL and cs.LG

Abstract: The vast majority of the popular English named entity recognition (NER) datasets contain American or British English data, despite the existence of many global varieties of English. As such, it is unclear whether they generalize for analyzing use of English globally. To test this, we build a newswire dataset, the Worldwide English NER Dataset, to analyze NER model performance on low-resource English variants from around the world. We test widely used NER toolkits and transformer models, including models using the pre-trained contextual models RoBERTa and ELECTRA, on three datasets: a commonly used British English newswire dataset, CoNLL 2003, a more American focused dataset OntoNotes, and our global dataset. All models trained on the CoNLL or OntoNotes datasets experienced significant performance drops-over 10 F1 in some cases-when tested on the Worldwide English dataset. Upon examination of region-specific errors, we observe the greatest performance drops for Oceania and Africa, while Asia and the Middle East had comparatively strong performance. Lastly, we find that a combined model trained on the Worldwide dataset and either CoNLL or OntoNotes lost only 1-2 F1 on both test sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alexander Shan (1 paper)
  2. John Bauer (4 papers)
  3. Riley Carlson (2 papers)
  4. Christopher Manning (7 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets