Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Coupled $\operatorname{G}_2$-instantons (2404.12937v2)

Published 19 Apr 2024 in math.DG and hep-th

Abstract: We introduce the coupled instanton equations for a metric, a spinor, a three-form, and a connection on a bundle, over a spin manifold. Special solutions in dimensions $6$ and $7$ arise, respectively, from the Hull--Strominger and the heterotic $\operatorname{G}_2$ system. The equations are motivated by recent developments in theoretical physics and can be recast using generalized geometry; we investigate how coupled instantons relate to generalized Ricci-flat metrics and also to Killing spinors on a Courant algebroid. We present two open questions regarding how these different geometric conditions are intertwined, for which a positive answer is expected from recent developments in the physics literature by De la Ossa, Larfors and Svanes, and in the mathematics literature on Calabi--Yau manifolds, in recent work by the second-named author with Gonz\'alez Molina. We give a complete solution to the first of these problems, providing a new method for the construction of instantons in arbitrary dimensions. For $\operatorname{G}_2$-structures with torsion coupled to $\operatorname{G}_2$-instantons, in dimension $7$, we also establish results around the second problem. The last part of the present work carefully studies the approximate solutions to the heterotic $\operatorname{G}_2$-system constructed by the third and fourth authors on contact Calabi--Yau $7$-manifolds, for which we prove the existence of approximate coupled $\operatorname{G}_2$-instantons and generalized Ricci-flat metrics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. Vertex algebras from the hull-strominger system. arXiv:2305.06836, 2024.
  2. Spinorial description of S⁢U⁢(3)𝑆𝑈3{SU}(3)italic_S italic_U ( 3 ) and G2subscript𝐺2{G}_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-manifolds. Journal of Geometry and Physics, 98:535–555, December 2015.
  3. On the holonomy of connections with skew-symmetric torsion, 2003.
  4. 3-Sasakian manifolds in dimension seven, their spinors and G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures. J. Geom. Phys., 60(2):326–332, 2010.
  5. Geometric flows and supersymmetry. Comm. Math. Phys., 405(1):Paper No. 16, 50, 2024.
  6. Transitive Courant algebroids, string structures and T𝑇Titalic_T-duality. Adv. Theor. Math. Phys., 19(3):613–672, 2015.
  7. Jean-Michel Bismut. A local index theorem for non-Kähler manifolds. Math. Ann., 284(4):681–699, 1989.
  8. Robert L. Bryant. Some remarks on G2-structures. Proceedings of 12th Gokova Geometry-Topology Conference, 0(May 2003):75–109, 2003.
  9. T𝑇Titalic_T-dual solutions and infinitesimal moduli of the G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Strominger system. Adv. Theor. Math. Phys., 26(6):1669–1704, 2022.
  10. Supergravity as generalised geometry I: type II theories. J. High Energy Phys., 11:091, 35, 2011.
  11. Superpotential of three dimensional 𝒩𝒩\mathcal{N}caligraphic_N = 1 heterotic supergravity. JHEP, 01:195, 2020.
  12. The geometry of four-manifolds. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1990. Oxford Science Publications.
  13. Xenia de la Ossa and Mateo Galdeano. Families of solutions of the heterotic G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-system, 2021.
  14. The infinitesimal moduli space of heterotic G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT systems. Comm. Math. Phys., 360(2):727–775, 2018.
  15. Restrictions of heterotic G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT structures and instanton connections. In Geometry and physics. Vol. II, pages 503–517. Oxford Univ. Press, Oxford, 2018.
  16. Gauge theory in higher dimensions. In The geometric universe (Oxford, 1996), pages 31–47. Oxford Univ. Press, Oxford, 1998.
  17. T. Friedrich and S. Ivanov. Parallel spinors and connections with skew–symmetric torsion in string theory, 2001.
  18. Parallel spinors and connections with skew-symmetric torsion in string theory, 2003.
  19. Compact supersymmetric solutions of the heterotic equations of motion in dimensions 7 and 8. Adv. Theor. Math. Phys., 15(2):245–284, 2011.
  20. Quaternionic Heisenberg Group and Heterotic String Solutions with Non-Constant Dilaton in Dimensions 7 and 5. Commun. Math. Phys., 339(1):199–219, 2015.
  21. On nearly parallel G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures. Journal of Geometry and Physics, pages 259–286, 1997.
  22. The twisted g22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT equation for strong g22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT-structures with torsion, 2023.
  23. M. García-Fernández. Torsion-free generalized connections and heterotic supergravity. Communications in Mathematical Physics, vol. 332:pag 89–115, 2014.
  24. M. García-Fernández. Ricci flow, Killing spinors, and T-duality in generalized geometry. Adv. Math., 350:1059–1108, 2019.
  25. Non-Kähler Calabi-Yau geometry and pluriclosed flow. J. Math. Pures Appl. (9), 177:329–367, 2023.
  26. Futaki invariants and Yau’s conjecture on the Hull-Strominger system, 2023.
  27. Generalized Ricci flow and the Hull-Strominger system, 2024.
  28. Canonical metrics on holomorphic Courant algebroids. Proc. Lond. Math. Soc., 125(3):700–758, 2022.
  29. Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry. Mathematische Annalen, 369(1-2):539–595, sep 2016.
  30. Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry. Math. Ann., 369(1-2):539–595, 2017.
  31. Gauge theory for string algebroids. arXiv:2004.11399, to appear in J. Diff. Geometry, 2020.
  32. Holomorphic string algebroids. Transactions of the American Mathematical Society, 373(10):7347–7382, jul 2020.
  33. M. García-Fernández and Jeffrey Streets. Generalized Ricci Flow. American Mathematical Society (AMS), 2020.
  34. Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton. Phys. Lett. B, 351:169–172, 1995. [Addendum: Phys.Lett.B 376, 329 (1996)].
  35. A. Gray. Vector cross products on manifolds. Trans. Amer. Math. Soc., 141:465–504, 1969.
  36. The heterotic G2subscriptG2\rm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT system with reducible characteristic holonomy, 2024.
  37. Marco Gualtieri. Branes on Poisson varieties. In The many facets of geometry, pages 368–394. Oxford Univ. Press, Oxford, 2010.
  38. Nigel Hitchin. Generalized Calabi–Yau Manifolds. The Quarterly Journal of Mathematics, 54(3):281–308, 09 2003.
  39. C. M. Hull. Compactifications of the heterotic superstring. Phys. Lett. B, 178(4):357–364, 1986.
  40. SU⁢(3)SU3\rm{SU}(3)roman_SU ( 3 )-instantons and G2subscriptG2\rm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Spin⁢(7)Spin7\rm{Spin}(7)roman_Spin ( 7 )-heterotic string solitons. Commun. Math. Phys., 259(1):79–102, 2005.
  41. S Ivanov and G Papadopoulos. Vanishing theorems and string backgrounds. Classical and Quantum Gravity, 18(6):1089, mar 2001.
  42. The Riemannian curvature identities of a G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT connection with skew-symmetric torsion and generalized Ricci solitons, 2023.
  43. S. Karigiannis. Flows of G2subscript𝐺2{G}_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures, I. The Quarterly Journal of Mathematics, 60(4):487–522, jul 2008.
  44. Spin Geometry. Princeton University Press, 1990.
  45. SU⁢(2)2SUsuperscript22\rm SU(2)^{2}roman_SU ( 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-invariant G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-instantons. Math. Ann., 371(1-2):961–1011, 2018.
  46. The heterotic G2subscriptG2\rm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-system on contact Calabi–Yau 7-manifolds. Transactions of the American Mathematical Society, Series B, 10(26):907–943, 2023.
  47. Classification of G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures. Journal of the London Mathematical Society, 53, 09 1994.
  48. Construction of \rG2subscript\rG2\rG_{2}start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-instantons via twisted connected sums. Mathematical Research Letters, 28(2):471–509, 2021.
  49. Raúl Gonzalez Molina. New approaches to the Hull-Strominger system: Futaki invariants and harmonic metrics. PhD thesis, Universidad Autónoma de Madrid, 2024.
  50. Christoph Nolle. Homogeneous heterotic supergravity solutions with linear dilaton. J. Phys. A, 45:045402, 2012.
  51. H. N. Sá Earp. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons over asymptotically cylindrical manifolds. Geometry & Topology, 19(1):61–111, 2015.
  52. H. N. Sá Earp and T. Walpuski. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons over twisted connected sums. Geometry & Topology, 19(3):1263–1285, 2015.
  53. Ricci flow on courant algebroids. arXiv:2402.11069, 2024.
  54. G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Instantons on the Spinor Bundle of the 3-Sphere. J. Geom. Anal., 34(5):Paper No. 149, 2024.
  55. Jakob Stein. SU⁢(2)2SUsuperscript22\mathrm{SU}(2)^{2}roman_SU ( 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-invariant gauge theory on asymptotically conical Calabi-Yau 3-folds. J. Geom. Anal., 33(4):55, 2023. Id/No 121.
  56. Andrew Strominger. Superstrings with torsion. Nuclear Phys. B, 274(2):253–284, 1986.
  57. Courant algebroids, Poisson-Lie T-duality, and type II supergravities. Comm. Math. Phys., 375:307–344, 2020.
  58. Roberto Tellez-Dominguez. Chern correspondence for higher principal bundles. arXiv:2310.12738, 2024.
  59. T. Walpuski. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons on generalised Kummer constructions. Geometry & Topology, 17(4):2345––2388, 2013.
  60. T. Walpuski. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons over twisted connected sums: an example. Math. Res. Lett., 23(2):529–544, 2016.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.