Coupled $\operatorname{G}_2$-instantons (2404.12937v2)
Abstract: We introduce the coupled instanton equations for a metric, a spinor, a three-form, and a connection on a bundle, over a spin manifold. Special solutions in dimensions $6$ and $7$ arise, respectively, from the Hull--Strominger and the heterotic $\operatorname{G}_2$ system. The equations are motivated by recent developments in theoretical physics and can be recast using generalized geometry; we investigate how coupled instantons relate to generalized Ricci-flat metrics and also to Killing spinors on a Courant algebroid. We present two open questions regarding how these different geometric conditions are intertwined, for which a positive answer is expected from recent developments in the physics literature by De la Ossa, Larfors and Svanes, and in the mathematics literature on Calabi--Yau manifolds, in recent work by the second-named author with Gonz\'alez Molina. We give a complete solution to the first of these problems, providing a new method for the construction of instantons in arbitrary dimensions. For $\operatorname{G}_2$-structures with torsion coupled to $\operatorname{G}_2$-instantons, in dimension $7$, we also establish results around the second problem. The last part of the present work carefully studies the approximate solutions to the heterotic $\operatorname{G}_2$-system constructed by the third and fourth authors on contact Calabi--Yau $7$-manifolds, for which we prove the existence of approximate coupled $\operatorname{G}_2$-instantons and generalized Ricci-flat metrics.
- Vertex algebras from the hull-strominger system. arXiv:2305.06836, 2024.
- Spinorial description of SU(3)𝑆𝑈3{SU}(3)italic_S italic_U ( 3 ) and G2subscript𝐺2{G}_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-manifolds. Journal of Geometry and Physics, 98:535–555, December 2015.
- On the holonomy of connections with skew-symmetric torsion, 2003.
- 3-Sasakian manifolds in dimension seven, their spinors and G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures. J. Geom. Phys., 60(2):326–332, 2010.
- Geometric flows and supersymmetry. Comm. Math. Phys., 405(1):Paper No. 16, 50, 2024.
- Transitive Courant algebroids, string structures and T𝑇Titalic_T-duality. Adv. Theor. Math. Phys., 19(3):613–672, 2015.
- Jean-Michel Bismut. A local index theorem for non-Kähler manifolds. Math. Ann., 284(4):681–699, 1989.
- Robert L. Bryant. Some remarks on G2-structures. Proceedings of 12th Gokova Geometry-Topology Conference, 0(May 2003):75–109, 2003.
- T𝑇Titalic_T-dual solutions and infinitesimal moduli of the G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Strominger system. Adv. Theor. Math. Phys., 26(6):1669–1704, 2022.
- Supergravity as generalised geometry I: type II theories. J. High Energy Phys., 11:091, 35, 2011.
- Superpotential of three dimensional 𝒩𝒩\mathcal{N}caligraphic_N = 1 heterotic supergravity. JHEP, 01:195, 2020.
- The geometry of four-manifolds. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1990. Oxford Science Publications.
- Xenia de la Ossa and Mateo Galdeano. Families of solutions of the heterotic G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-system, 2021.
- The infinitesimal moduli space of heterotic G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT systems. Comm. Math. Phys., 360(2):727–775, 2018.
- Restrictions of heterotic G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT structures and instanton connections. In Geometry and physics. Vol. II, pages 503–517. Oxford Univ. Press, Oxford, 2018.
- Gauge theory in higher dimensions. In The geometric universe (Oxford, 1996), pages 31–47. Oxford Univ. Press, Oxford, 1998.
- T. Friedrich and S. Ivanov. Parallel spinors and connections with skew–symmetric torsion in string theory, 2001.
- Parallel spinors and connections with skew-symmetric torsion in string theory, 2003.
- Compact supersymmetric solutions of the heterotic equations of motion in dimensions 7 and 8. Adv. Theor. Math. Phys., 15(2):245–284, 2011.
- Quaternionic Heisenberg Group and Heterotic String Solutions with Non-Constant Dilaton in Dimensions 7 and 5. Commun. Math. Phys., 339(1):199–219, 2015.
- On nearly parallel G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures. Journal of Geometry and Physics, pages 259–286, 1997.
- The twisted g22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT equation for strong g22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT-structures with torsion, 2023.
- M. García-Fernández. Torsion-free generalized connections and heterotic supergravity. Communications in Mathematical Physics, vol. 332:pag 89–115, 2014.
- M. García-Fernández. Ricci flow, Killing spinors, and T-duality in generalized geometry. Adv. Math., 350:1059–1108, 2019.
- Non-Kähler Calabi-Yau geometry and pluriclosed flow. J. Math. Pures Appl. (9), 177:329–367, 2023.
- Futaki invariants and Yau’s conjecture on the Hull-Strominger system, 2023.
- Generalized Ricci flow and the Hull-Strominger system, 2024.
- Canonical metrics on holomorphic Courant algebroids. Proc. Lond. Math. Soc., 125(3):700–758, 2022.
- Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry. Mathematische Annalen, 369(1-2):539–595, sep 2016.
- Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry. Math. Ann., 369(1-2):539–595, 2017.
- Gauge theory for string algebroids. arXiv:2004.11399, to appear in J. Diff. Geometry, 2020.
- Holomorphic string algebroids. Transactions of the American Mathematical Society, 373(10):7347–7382, jul 2020.
- M. García-Fernández and Jeffrey Streets. Generalized Ricci Flow. American Mathematical Society (AMS), 2020.
- Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton. Phys. Lett. B, 351:169–172, 1995. [Addendum: Phys.Lett.B 376, 329 (1996)].
- A. Gray. Vector cross products on manifolds. Trans. Amer. Math. Soc., 141:465–504, 1969.
- The heterotic G2subscriptG2\rm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT system with reducible characteristic holonomy, 2024.
- Marco Gualtieri. Branes on Poisson varieties. In The many facets of geometry, pages 368–394. Oxford Univ. Press, Oxford, 2010.
- Nigel Hitchin. Generalized Calabi–Yau Manifolds. The Quarterly Journal of Mathematics, 54(3):281–308, 09 2003.
- C. M. Hull. Compactifications of the heterotic superstring. Phys. Lett. B, 178(4):357–364, 1986.
- SU(3)SU3\rm{SU}(3)roman_SU ( 3 )-instantons and G2subscriptG2\rm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Spin(7)Spin7\rm{Spin}(7)roman_Spin ( 7 )-heterotic string solitons. Commun. Math. Phys., 259(1):79–102, 2005.
- S Ivanov and G Papadopoulos. Vanishing theorems and string backgrounds. Classical and Quantum Gravity, 18(6):1089, mar 2001.
- The Riemannian curvature identities of a G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT connection with skew-symmetric torsion and generalized Ricci solitons, 2023.
- S. Karigiannis. Flows of G2subscript𝐺2{G}_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures, I. The Quarterly Journal of Mathematics, 60(4):487–522, jul 2008.
- Spin Geometry. Princeton University Press, 1990.
- SU(2)2SUsuperscript22\rm SU(2)^{2}roman_SU ( 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-invariant G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-instantons. Math. Ann., 371(1-2):961–1011, 2018.
- The heterotic G2subscriptG2\rm{G}_{2}roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-system on contact Calabi–Yau 7-manifolds. Transactions of the American Mathematical Society, Series B, 10(26):907–943, 2023.
- Classification of G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-structures. Journal of the London Mathematical Society, 53, 09 1994.
- Construction of \rG2subscript\rG2\rG_{2}start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-instantons via twisted connected sums. Mathematical Research Letters, 28(2):471–509, 2021.
- Raúl Gonzalez Molina. New approaches to the Hull-Strominger system: Futaki invariants and harmonic metrics. PhD thesis, Universidad Autónoma de Madrid, 2024.
- Christoph Nolle. Homogeneous heterotic supergravity solutions with linear dilaton. J. Phys. A, 45:045402, 2012.
- H. N. Sá Earp. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons over asymptotically cylindrical manifolds. Geometry & Topology, 19(1):61–111, 2015.
- H. N. Sá Earp and T. Walpuski. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons over twisted connected sums. Geometry & Topology, 19(3):1263–1285, 2015.
- Ricci flow on courant algebroids. arXiv:2402.11069, 2024.
- G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Instantons on the Spinor Bundle of the 3-Sphere. J. Geom. Anal., 34(5):Paper No. 149, 2024.
- Jakob Stein. SU(2)2SUsuperscript22\mathrm{SU}(2)^{2}roman_SU ( 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-invariant gauge theory on asymptotically conical Calabi-Yau 3-folds. J. Geom. Anal., 33(4):55, 2023. Id/No 121.
- Andrew Strominger. Superstrings with torsion. Nuclear Phys. B, 274(2):253–284, 1986.
- Courant algebroids, Poisson-Lie T-duality, and type II supergravities. Comm. Math. Phys., 375:307–344, 2020.
- Roberto Tellez-Dominguez. Chern correspondence for higher principal bundles. arXiv:2310.12738, 2024.
- T. Walpuski. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons on generalised Kummer constructions. Geometry & Topology, 17(4):2345––2388, 2013.
- T. Walpuski. G2−limit-fromsubscriptG2\rm{G}_{2}-roman_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -instantons over twisted connected sums: an example. Math. Res. Lett., 23(2):529–544, 2016.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.