Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Positivity of the Neural Tangent Kernel (2404.12928v1)

Published 19 Apr 2024 in cs.LG, cs.AI, math.PR, and math.SP

Abstract: The Neural Tangent Kernel (NTK) has emerged as a fundamental concept in the study of wide Neural Networks. In particular, it is known that the positivity of the NTK is directly related to the memorization capacity of sufficiently wide networks, i.e., to the possibility of reaching zero loss in training, via gradient descent. Here we will improve on previous works and obtain a sharp result concerning the positivity of the NTK of feedforward networks of any depth. More precisely, we will show that, for any non-polynomial activation function, the NTK is strictly positive definite. Our results are based on a novel characterization of polynomial functions which is of independent interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.