When time delays and phase lags are not the same: higher-order phase reduction unravels delay-induced synchronization in oscillator networks (2404.11340v1)
Abstract: Coupled oscillators with time-delayed network interactions are critical to understand synchronization phenomena in many physical systems. Phase reductions to finite-dimensional phase oscillator networks allow for their explicit analysis. However, first-order phase reductions - where delays correspond to phase lags - fail to capture the delay-dependence of synchronization. We develop a systematic approach to derive phase reductions for delay-coupled oscillators to arbitrary order. Already the second-order reduction can predict delay-dependent (bi-)stability of synchronized states as demonstrated for Stuart-Landau oscillators.
- D. Pazó and E. Montbrió, Phys Rev Lett 116, 238101 (2016).
- I. Z. Kiss, Curr Opin Chem Eng 21, 1 (2018).
- H. Nakao, Contemp Phys 57, 188 (2016).
- P. Ashwin, S. Coombes, and R. Nicks, J Math Neurosci 6, 2 (2016).
- B. Pietras and A. Daffertshofer, Phys Rep 819, 1 (2019).
- H. Sakaguchi and Y. Kuramoto, Prog Theor Phys 76, 576 (1986).
- L. A. Smirnov and A. Pikovsky, arXiv:2307.12563 (2023).
- N. Fenichel, Indiana U Math J 21, 193 (1972).
- P. W. Bates, K. Lu, and C. Zeng, Mem. Amer. Math. Soc. 135 (1998).
- E. M. Izhikevich, Phys Rev E 58, 905 (1998).
- S. von der Gracht, E. Nijholt, and B. Rink, arXiv:2306.03320 (2023).
- C. Bick, B. Rink, and B. de Wolff, arXiv (2024).
- E. M. Izhikevich, SIAM J Appl Math 60, 1789 (2000).
- C. Bick, T. Böhle, and C. Kuehn, arXiv:2305.04277 (2023a).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.