Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Melnikov Method for Perturbed Completely Integrable Systems (2404.10986v1)

Published 17 Apr 2024 in math.DS

Abstract: We consider a completely integrable system of differential equations in arbitrary dimensions whose phase space contains an open set foliated by periodic orbits. This research analyzes the persistence and stability of the periodic orbits under a nonlinear periodic perturbation. For this purpose, we use the Melnikov method and Floquet theory to establish conditions for the existence and stability of periodic orbits. Our approach considers periods of the unperturbed orbits depending on the integrals and constant periods. In the applications, we deal with both cases. Precisely, we study the existence of periodic orbits in a perturbed generalized Euler system. In the degenerate case, we analyze the existence and stability of periodic orbits for a perturbed harmonic oscillator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube